Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Biomol Struct Dyn ; : 1-19, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37378542

Standard force field-based simulations to accomplish structure-based evaluations of lead molecules is a powerful tool. Combining protein fragmentation into tractable sub-systems with continuum solvation method is envisaged to enable quantum mechanics-based electronic structure calculations of macromolecules in their realistic environment. This along with incorporation of many-body polarization effect in molecular dynamics simulations may augment an accurate description of electrostatics of protein-inhibitor systems for effective drug design. Rheumatoid arthritis (RA) is a complex autoimmune disorder plagued by the ceiling effect of current targeted therapies, encouraging identification of new druggable targets and corresponding drug design to tackle the refractory form of disease. In this study, polarization-inclusive force field approach has been used to model protein solvation and ligand binding for 'Mitogen-activated protein kinase' (MAP3K8), a regulatory node of notable pharmacological relevance in RA synovial biology. For MAP3K8 inhibitors belonging to different scaffold series, the calculations illustrated differential electrostatic contribution to their relative binding affinities and successfully explained examples from available structure-activity relationship studies. Results from this study exemplified i) the advantage of this approach in reliably ranking inhibitors having close nanomolar range activities for the same target; and ii) its prospective application in lead molecule identification aiding drug discovery efforts in RA.Communicated by Ramaswamy H. Sarma.

2.
Front Immunol ; 13: 834247, 2022.
Article En | MEDLINE | ID: mdl-35265082

Rheumatoid arthritis (RA) is a multifactorial autoimmune disease characterized by chronic inflammation and destruction of multiple small joints which may lead to systemic complications. Altered immunity via pathogenic autoantibodies pre-date clinical symptom development by several years. Incompletely understood range of mechanisms trigger joint-homing, leading to clinically evident articular disease. Advances in therapeutic approaches and understanding pathogenesis have improved prognosis and likely remission. However, partial/non-response to conventional and biologic therapies witnessed in a subset of patients highlights the need for new therapeutics. It is now evident that joint disease chronicity stems from recalcitrant inflammatory synovial environment, majorly maintained by epigenetically and metabolically reprogrammed synoviocytes. Therefore, interference with effector functions of activated cell types seems a rational strategy to reinstate synovial homeostasis and complement existing anti-inflammatory interventions to mitigate chronic RA. Presenting this newer aspect of fibroblast-like synoviocytes and myeloid cells underlying the altered synovial biology in RA and its potential for identification of new druggable targets is attempted in this review. Major leads from i) molecular insights of pathogenic cell types from hypothesis free OMICS approaches; ii) hierarchy of their dysregulated signaling pathways; and iii) knowledge of druggability of molecular nodes in these pathways are highlighted. Development of such synovial biology-directed therapeutics hold promise for an enriched drug repertoire for RA.


Arthritis, Rheumatoid , Synoviocytes , Biology , Fibroblasts/metabolism , Humans , Inflammation/metabolism , Synoviocytes/metabolism
...