Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 84
1.
Pharm Res ; 40(10): 2317-2327, 2023 Oct.
Article En | MEDLINE | ID: mdl-37910340

PURPOSE: New solutions are needed to enable the efficient use of poorly water-soluble drugs. Therefore, we aimed to demonstrate that decreasing particle size with a solution-to-particle method known as nanoforming can improve dissolution and thus bioavailability. METHODS: Piroxicam, a poorly water-soluble non-steroidal anti-inflammatory drug (NSAID), was used as a model compound. A Quality-by-Design (QbD) approach was used to nanoform piroxicam and a design space was established. The pharmacokinetics of piroxicam nanoparticles were compared to two marketed products in a clinical trial. RESULTS: Nanoformed tablets showed a 33% increase in exposure during the first hour after dosing (AUC0-1 h) compared with an immediate release tablet and was similar to a fast absorbing tablet incorporating complexation of piroxicam with ß-cyclodextrin. CONCLUSIONS: The results show that nanoforming enabled more rapid absorption in comparison to a typical marketed tablet and indicate that nanoforming is an alternative to complex formulation such as cyclodextrins based products. The study outcomes support the potential of nanoforming for producing fast-acting dosage forms of poorly soluble drugs.


Cyclodextrins , Piroxicam , Piroxicam/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Tablets , Water , Solubility
3.
Eur J Pharm Sci ; 188: 106497, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37329925

Semi-solid extrusion (SSE) 3D printing enables flexible designs and dose sizes to be printed on demand and is a suitable tool for fabricating personalized dosage forms. Controlled Expansion of Supercritical Solution (CESS®) is a particle size reduction technology, and it produces particles of a pure active pharmaceutical ingredient (API) in a dry state, suspendable in the printing ink. In the current study, as a model API of poorly water-soluble drug, nanoformed piroxicam (nanoPRX) prepared by CESS® was accommodated in hydroxypropyl methylcellulose- or hydroxypropyl cellulose-based ink formulations to warrant the printability in SSE 3D printing. Importantly, care must be taken when developing nanoPRX formulations to avoid changes in their polymorphic form or particle size. Printing inks suitable for SSE 3D printing that successfully stabilized the nanoPRX were developed. The inks were printed into films with escalating doses with exceptional accuracy. The original polymorphic form of nanoPRX in the prepared dosage forms was not affected by the manufacturing process. In addition, the conducted stability study showed that the nanoPRX in the prepared dosage form remained stable for at least three months from printing. Overall, the study rationalizes that with nanoparticle-based printing inks, superior dose control for the production of personalized dosage forms of poorly water-soluble drugs at the point-of-care can be achieved.


Piroxicam , Printing, Three-Dimensional , Technology , Excipients , Water
4.
J Pharm Biomed Anal ; 224: 115169, 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36462249

Most new small drug molecules in pharmaceutical development require improvement of solubility. The controlled expansion of supercritical solutions (CESS®) process is a nanoparticle production technology, dedicated to enhancing the dissolution rate of active pharmaceutical ingredients (APIs) suffering from poor solubility and enabling novel drug delivery opportunities. In this process, the API is dissolved in supercritical carbon dioxide (scCO2) and nanoparticles are formed through controlled pressure reduction. To improve process visibility and control, ultraviolet-visible (UV-Vis) spectroscopy was incorporated into CESS® process as a process analytical technology (PAT) tool. The tool quantifies the amount of API dissolved in scCO2 during the solubilization phase of the process. Sample interfacing of the UV-Vis spectrometer was done with a custom-made pressure and temperature rated transmission flow-through cell. In-process calibration was developed to correlate the UV-Vis absorption spectra to the API concentration. Due to the density-dependent molar absorption coefficient of API in scCO2, the calibration was done for each combination of temperature and pressure. The developed PAT tool provides insight into the process enabling real-time API quantity estimation. It also facilitates process development through Quality by Design (QbD) and offers a system for enhanced process control and troubleshooting. For instance, the in-line API concentration data allows one to study the solubilization behavior of the API in the process and to optimize the process parameters in order to maximize throughput.


Nanoparticles , Pharmaceutical Preparations/chemistry , Spectrum Analysis , Temperature , Solubility , Nanoparticles/chemistry
5.
Pharmaceutics ; 14(7)2022 Jun 24.
Article En | MEDLINE | ID: mdl-35890235

Certain patient populations receive insufficient medicinal treatment due to a lack of commercially available products. The number of approved veterinary products is limited, making animals a patient population with suboptimal medicinal treatments available. To answer to this unmet need, compounding and off-label use of human-marketed products are practiced. Both of which have a significant risk of preparation errors. Hence, there is a dire demand to find and implement a more automated approach to the accurate, precise, and rapid production of veterinary dosage forms close to the point-of-care. This study aimed to assess the use of semi-solid extrusion-based 3D printing for the preparation of tailored doses of theophylline in the form of a chewable dosage form suitable for veterinary use. This study proved that semi-solid extrusion-based 3D printing could successfully be utilized to manufacture pet-friendly, chewable theophylline-loaded tablets. The prepared dosage forms showed a high correlation (R2 = 0.9973) between the designed size and obtained drug amount and met the USP and Ph. Eur. content uniformity criteria. Furthermore, the stability study showed the dosage form being stable and able to be used for up to three months after printing.

6.
Eur J Pharm Sci ; 174: 106190, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35443212

Currently, there are a few or none marketed gabapentin veterinary products, leading to treatment with compounded dosage forms or off-label use of human-marketed products. With the said approaches, there are significant risks of preparation errors, rendering these practices suboptimal. A new manufacturing technique to accurately and rapidly prepare veterinary dosage forms close to the point-of-care is needed. However, a current hurdle in developing small-dose gabapentin dosage forms is the quantification of the gabapentin molecule. UV-Vis spectrophotometric quantification possesses suitable properties for implementation at small production sites, but quantifying gabapentin with the said technique has proven to be challenging as the small molecule lacks chromophores. This study aimed at thoroughly assessing UV-Vis spectrophotometric gabapentin quantification methods with the intent of finding a reliable method. Excellent linearity (R2 = 0.9998) in a broad and useful concentration range (0.5-40 µg/mL) was detected for the ascorbic acid derivatization method at a wavelength of 376 nm. The method was successfully applied to determine the drug content in the prepared semi-solid extrusion 3D-printed dosage forms. This study proved that pet-friendly tailored gabapentin dosage forms could easily be manufactured by semi-solid extrusion 3D printing and UV-Vis spectrophotometrically analyzed with the ascorbic acid derivatization method.


Ascorbic Acid , Printing, Three-Dimensional , Drug Liberation , Gabapentin , Humans , Tablets , Technology, Pharmaceutical/methods
7.
Int J Pharm ; 597: 120309, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33540037

Powders are usually dispensed, blended, and transferred between different manufacturing steps in so-called Intermediate Bulk Containers (IBCs), and discharge from an IBC plays a critical role in the ability to manufacture high-quality tablets. To better understand IBC discharge, the flow behavior of selected excipients was comprehensively characterized using a number of techniques including the Hausner ratio/Carr's index, Erweka flow test, FlowPro flow test, shear test and wall friction test as well as FT4 powder rheometer experiments. Jenike's hopper design methodology was then used to predict the minimum non-arching outlet diameter and the mode of flow. Furthermore, the discharge rate from an IBC was predicted using a simple model that takes into account gravity and aerodynamic drag. The predictions were experimentally verified by measuring the discharge rate from a 20 L IBC using five commonly-used excipients. The small-scale Erweka flow test provided the best prediction of the full-scale IBC discharge experiment. Furthermore, a simple model that relied only on the particle size of the material and the diameter of the discharge opening was found to predict the IBC discharge rate remarkably well.


Excipients , Patient Discharge , Humans , Particle Size , Powders , Tablets
8.
Pharmaceutics ; 12(12)2020 Dec 19.
Article En | MEDLINE | ID: mdl-33352700

Currently, the number of approved veterinary medicines are limited, and human medications are used off-label. These approved human medications are of too high potencies for a cat or a small dog breed. Therefore, there is a dire demand for smaller doses of veterinary medicines. This study aims to investigate the use of three semi-solid extrusion 3D printers in a pharmacy or animal clinic setting for the extemporaneous manufacturing of prednisolone containing orodispersible films for veterinary use. Orodispersible films with adequate content uniformity and acceptance values as defined by the European Pharmacopoeia were produced with one of the studied printers, namely the Allevi 2 bioprinter. Smooth and flexible films with high mechanical strength, neutral pH, and low moisture content were produced with a high correlation between the prepared design and the obtained drug amount, indicating that the Allevi 2 printer could successfully be used to extemporaneously manufacture personalized doses for animals at the point-of-care.

9.
Pharmaceutics ; 12(3)2020 Mar 05.
Article En | MEDLINE | ID: mdl-32150899

The utilization of three-dimensional (3D) printing technologies as innovative manufacturing methods for drug products has recently gained growing interest. From a technological viewpoint, proof-of-concept on the performance of different printing methods already exist, followed by visions about future applications in hospital or community pharmacies. The main objective of this study was to investigate the perceptions of healthcare professionals in a tertiary university hospital about oral 3D-printed medicines for pediatric patients by means of focus group discussions. In general, the healthcare professionals considered many positive aspects and opportunities in 3D printing of pharmaceuticals. A precise dose as well as personalized doses and dosage forms were some of the advantages mentioned by the participants. Especially in cases of polypharmacy, incorporating several drug substances into one product to produce a polypill, personalized regarding both the combination of drug substances and the doses, would benefit drug treatments of several medical conditions and would improve adherence to medications. In addition to the positive aspects, concerns and prerequisites for the adoption of 3D printing technologies at hospital settings were also expressed. These perspectives are suggested by the authors to be focus points for future research on personalized 3D-printed drug products.

10.
Pharmaceutics ; 12(2)2020 Jan 30.
Article En | MEDLINE | ID: mdl-32019100

Oral drug administration to pediatric patients is characterized by a lack of age-appropriate drug products and the off-label use of medicines. However, drug administration practices at hospital wards is a scarcely studied subject. The aim of this study was to explore the oral drug administration practices at pediatric hospital wards, with a focus on experiences and challenges faced, methods used to mitigate existing problems, drug manipulation habits, perceptions about oral dosage forms and future needs of oral dosage forms for children. This was a qualitative study consisting of focus group discussions with physicians, nurses and clinical pharmacists in a tertiary university hospital with the objective of bringing forward a holistic view on this research topic. These healthcare professionals recognized different administration challenges that were classified as either dosage form-related or patient-related ones. A lack of depot formulations developed especially for children as well as oral pediatric dosage forms of drug substances currently available as intravenous dosage forms was recognized. The preferred oral dosage forms were oral liquids and orodispersible tablets. Patient-centered drug administration practices including factors facilitating drug administration both at hospital wards and at home after patient discharge were identified. Among all healthcare professionals, the efficient cooperation in drug prescribing and administration as well as in educating the child's caregivers in correct administration techniques before discharge and improving the overall discharge process of patients was emphasized. This study complements the prevalent understanding that new dosage forms for children of varying ages and stages of development are still needed. It also brings a holistic view on different aspects of oral drug administration to pediatric patients and overall patient-centered drug administration practices.

11.
Pharmaceutics ; 12(1)2020 Jan 01.
Article En | MEDLINE | ID: mdl-31906316

Stencil printing is a commonly used printing method, but it has not previously been used for production of pharmaceuticals. The aim of this study was to explore whether stencil printing of drug containing polymer inks could be used to manufacture flexible dosage forms with acceptable mass and content uniformity. Formulation development was supported by physicochemical characterization of the inks and final dosage forms. The printing of haloperidol (HAL) discs was performed using a prototype stencil printer. Ink development comprised of investigations of ink rheology in combination with printability assessment. The results show that stencil printing can be used to manufacture HAL doses in the therapeutic treatment range for 6-17 year-old children. The therapeutic HAL dose was achieved for the discs consisting of 16% of hydroxypropyl methylcellulose (HPMC) and 1% of lactic acid (LA). The formulation pH remained above pH 4 and the results imply that the drug was amorphous. Linear dose escalation was achieved by an increase in aperture area of the print pattern, while keeping the stencil thickness fixed. Disintegration times of the orodispersible discs printed with 250 and 500 µm thick stencils were below 30 s. In conclusion, stencil printing shows potential as a manufacturing method of pharmaceuticals.

12.
Pharmaceutics ; 11(12)2019 Dec 12.
Article En | MEDLINE | ID: mdl-31842385

Polymeric wound dressings with advanced properties are highly preferred formulations to promote the tissue healing process in wound care. In this study, a combinational technique was investigated for the fabrication of bi-layered carriers from a blend of polyvinyl alcohol (PVA) and sodium alginate (SA). The bi-layered carriers were prepared by solvent casting in combination with two surface modification approaches: electrospinning or three-dimensional (3D) printing. The bi-layered carriers were characterized and evaluated in terms of physical, physicochemical, adhesive properties and for the safety and biological cell behavior. In addition, an initial inkjet printing trial for the incorporation of bioactive substances for drug delivery purposes was performed. The solvent cast (SC) film served as a robust base layer. The bi-layered carriers with electrospun nanofibers (NFs) as the surface layer showed improved physical durability and decreased adhesiveness compared to the SC film and bi-layered carriers with patterned 3D printed layer. Thus, these bi-layered carriers presented favorable properties for dermal use with minimal tissue damage. In addition, electrospun NFs on SC films (bi-layered SC/NF carrier) provided the best physical structure for the cell adhesion and proliferation as the highest cell viability was measured compared to the SC film and the carrier with patterned 3D printed layer (bi-layered SC/3D carrier). The surface properties of the bi-layered carriers with electrospun NFs showed great potential to be utilized in advanced technical approach with inkjet printing for the fabrication of bioactive wound dressings.

13.
Expert Opin Drug Deliv ; 16(9): 981-993, 2019 09.
Article En | MEDLINE | ID: mdl-31382842

Introduction: Oromucosal films, comprising mucoadhesive buccal films (MBFs) and orodispersible films (ODFs), are considered patient-centric dosage forms. Target groups are patients with special needs. Various active pharmaceutical ingredients have been shown to be suitable for oromucosal film production. A shift is seen in the production techniques, from conventional solvent casting to printing techniques. Areas covered: In this review, the patient acceptability of oromucosal films is discussed. An overview is given of the small molecule drugs, biopharmaceuticals and herbal extracts that have been incorporated so far. Finally, the current state of 2D and 3D printing techniques for production purposes is discussed. Expert opinion: The patient-centric features are important for the further development and acceptance of this oral solid dosage form. Oromucosal films perfectly fit in the current attention for personalized medicine. Both MBFs and ODFs are intended for either a local or a systemic effect. For buccal absorption, sufficient mucoadhesion is one of the most important criteria an oromucosal film must comply with. For the preparation, the solvent casting technique is still predominately used. Some limitations of this production method can be tackled by printing techniques. However, these novel techniques introduce new requirements, yet to be set, for oromucosal film preparation.


Drug Delivery Systems , Oral Mucosal Absorption , Administration, Buccal , Animals , Humans , Mouth Mucosa/metabolism , Patient Preference , Printing, Three-Dimensional
14.
Pharmaceutics ; 11(7)2019 Jul 14.
Article En | MEDLINE | ID: mdl-31337146

To date, the lack of age-appropriate medicines for many indications results in dose manipulation of commercially available dosage forms, commonly resulting in inaccurate doses. Various printing technologies have recently been explored in the pharmaceutical field due to the flexible and precise nature of the techniques. The aim of this study was, therefore, to compare the currently used method to produce patient-tailored warfarin doses at HUS Pharmacy in Finland with two innovative printing techniques. Dosage forms of various strengths (0.1, 0.5, 1, and 2 mg) were prepared utilizing semisolid extrusion 3D printing, inkjet printing and the established compounding procedure for oral powders in unit dose sachets (OPSs). Orodispersible films (ODFs) drug-loaded with warfarin were prepared by means of printing using hydroxypropylcellulose as a film-forming agent. The OPSs consisted of commercially available warfarin tablets and lactose monohydrate as a filler. The ODFs resulted in thin and flexible films showing acceptable ODF properties. Moreover, the printed ODFs displayed improved drug content compared to the established OPSs. All dosage forms were found to be stable over the one-month stability study and suitable for administration through a naso-gastric tube, thus, enabling administration to all possible patient groups in a hospital ward. This work demonstrates the potential of utilizing printing technologies for the production of on-demand patient-specific doses and further discusses the advantages and limitations of each method.

15.
AAPS PharmSciTech ; 20(7): 261, 2019 07 23.
Article En | MEDLINE | ID: mdl-31338619
16.
Int J Pharm ; 564: 117-123, 2019 Jun 10.
Article En | MEDLINE | ID: mdl-30974195

Warfarin is a narrow therapeutic index drug that requires personalized dosing which is currently not achieved by the marketed products. Further, pediatric and geriatric patients may face swallowing problems with solid oral dosage forms. To face these issues, the aim of the present study was to investigate semisolid extrusion 3D printing for production of warfarin containing orodispersible films. Extrusion 3D printing was successfully utilized to produce transparent, smooth and thin, yet flexible and strong orodispersible films containing therapeutic doses of warfarin (3.9-7.4 mg). Excellent linearity (R2 = 0.9996) between the designed sizes of the films and the drug contents was achieved indicating semisolid extrusion 3D printing as a promising way to produce orodispersible warfarin films with personalized doses. This one-step-process utilizes disposable syringes hindering the printing material to be in contact with the printing equipment making it a potential method for on-demand in-hospital compounding.


Drug Delivery Systems , Warfarin/chemistry , Administration, Oral , Drug Compounding , Drug Liberation , Humans , Hydrogen-Ion Concentration , Precision Medicine , Printing, Three-Dimensional , Surface Properties
17.
Eur J Pharm Sci ; 130: 114-123, 2019 Mar 15.
Article En | MEDLINE | ID: mdl-30690187

As research progresses on personalized medicines, it is clear that personalized and flexible formulations can provide effective treatment with reduced side effects especially for diseases like cancer, characteristic of high patient variability. 2D and 3D printers are frequently reported in the literature for the preparation of pharmaceutical products with adjusted dose and selected drug combinations. However, in-depth characterization studies of these formulations are rather limited. In this paper, ex vivo and mechanical characterization studies of antiviral and anticancer drug printed film formulations designed for personalized application were performed. Effects of the printing process with pharmaceutical formulations such as paclitaxel (PCX):cyclodextrin (CD) complex or cidofovir (CDV) encapsulated into poly(ethylene glycol)-polycaprolactone (PEG-PCL) nanoparticles on the films were evaluated through a series of mechanical characterization studies. Inkjet printing process was found to cause no significant change in the thicknesses of the film formulations, while mechanical strength and surface free energy increased and nano-sized voids in the film structure decreased. According to the mechanical characterization data, the unprinted film had maximum force (Fmax) value of 15.6 MPa whereas Fmax increased to 43.8 MPa for PCX:CD complex printed film and to 37.7 MPa for the antiviral CDV-PEG-PCL nanoparticle printed film. In the light of ex vivo findings of sheep cervix-uterine tissue, bioadhesive properties of film formulations significantly improved after inkjet printing with different drug formulations. It has also been shown that the anticancer formulation printed on the film was maintained at the cervix tissue surface for >12 h. This study has shown for the first time that inkjet printing process does not adversely affect the mechanical properties of the bioadhesive film formulations. It has also been shown that durable bioadhesive film formulations for personalized dosing can be prepared by combining nanotechnology and inkjet printing.


Adhesives/administration & dosage , Antineoplastic Agents/administration & dosage , Antiviral Agents/administration & dosage , Nanoparticles/administration & dosage , Printing, Three-Dimensional , Uterine Cervical Neoplasms/drug therapy , Adhesives/chemical synthesis , Adhesives/pharmacokinetics , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Drug Evaluation, Preclinical/methods , Female , Nanoparticles/chemistry , Nanoparticles/metabolism , Sheep , Treatment Outcome , Uterine Cervical Neoplasms/metabolism
18.
AAPS PharmSciTech ; 20(2): 52, 2019 Jan 07.
Article En | MEDLINE | ID: mdl-30617660

The aim of the present work was to produce 3D-printed oral dosage forms with a sufficient drug dose displaying various release profiles. Hot-melt extrusion was utilized to produce drug-loaded feedstock material that was subsequently 3D-printed into 6, 8, and 10 × 2.5 mm tablets with 15% and 90% infill levels. The prepared formulations contained 30% (w/w) isoniazid in combination with one or multiple pharmaceutical polymers possessing suitable properties for oral drug delivery. Thirteen formulations were successfully hot-melt extruded of which eight had properties suitable for fused deposition modeling 3D printing. Formulations containing HPC were found to be superior regarding printability in this study. Filaments with a breaking distance below 1.5 mm were observed to be too brittle to be fed into the printer. In addition, filaments with high moisture uptake at high relative humidity generally failed to be printable. Different release profiles for the 3D-printed tablets were obtained as a result of using different polymers in the printed formulations. For 8 mm tablets printed with 90% infill, 80% isoniazid release was observed between 40 and 852 min. Drug release characteristics could further be altered by changing the infill or the size of the printed tablets allowing personalization of the tablets. This study presents novel formulations containing isoniazid for prevention of latent tuberculosis and investigates 3D printing technology for personalized production of oral solid dosage forms enabling adjustable dose and drug release properties.


Antitubercular Agents/chemistry , Antitubercular Agents/pharmacokinetics , Drug Liberation , Isoniazid/chemistry , Isoniazid/pharmacokinetics , Printing, Three-Dimensional , Antitubercular Agents/administration & dosage , Drug Compounding/methods , Drug Delivery Systems/methods , Isoniazid/administration & dosage , Tablets , Technology, Pharmaceutical/methods , Tuberculosis/metabolism , Tuberculosis/prevention & control
19.
Biomaterials ; 190-191: 97-110, 2019 01.
Article En | MEDLINE | ID: mdl-30415019

3D printed scaffolds hold promising perspective for bone tissue regeneration. Inspired by process of bone development stage, 3D printed scaffolds with rapid internal vascularization ability and robust osteoinduction bioactivity will be an ideal bone substitute for clinical use. Here, we fabricated a 3D printed biodegradable scaffold that can control release deferoxamine, via surface aminolysis and layer-by-layer assembly technique, which is essential for angiogenesis and osteogenesis and match to bone development and reconstruction. Our in vitro studies show that the scaffold significantly accelerates the vascular pattern formation of human umbilical endothelial cells, boosts the mineralized matrix production, and the expression of osteogenesis-related genes during osteogenic differentiation of mesenchymal stem cells. In vivo results show that deferoxamine promotes the vascular ingrowth and enhances the bone regeneration at the defect site in a rat large bone defect model. Moreover, this 3D-printed scaffold has excellent biocompatibility that is suitable for mesenchymal stem cells grow and differentiate and possess the appropriate mechanical property that is similar to natural cancellous bone. In summary, this 3D-printed scaffold holds huge potential for clinical translation in the treatment of segmental bone defect, due to its flexibility, economical friendly and practicality.


Bone Regeneration , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Bone Regeneration/drug effects , Cells, Cultured , Deferoxamine/administration & dosage , Deferoxamine/pharmacology , Delayed-Action Preparations/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Rats, Sprague-Dawley
20.
ACS Sustain Chem Eng ; 6(5): 5663-5680, 2018 May 07.
Article En | MEDLINE | ID: mdl-30271688

Wood-derived biopolymers have attracted great attention over the past few decades due to their abundant and versatile properties. The well-separated three main components, i.e., cellulose, hemicelluloses, and lignin, are considered significant candidates for replacing and improving on oil-based chemicals and materials. The production of nanocellulose from wood pulp opens an opportunity for novel material development and applications in nanotechnology. Currently, increased research efforts are focused on developing 3D printing techniques for wood-derived biopolymers for use in emerging application areas, including as biomaterials for various biomedical applications and as novel composite materials for electronics and energy devices. This Review highlights recent work on emerging applications of wood-derived biopolymers and their advanced composites with a specific focus on customized pharmaceutical products and advanced functional biomedical devices prepared via three-dimensional printing. Specifically, various biofabrication strategies in which woody biopolymers are used to fabricate customized drug delivery devices, cartilage implants, tissue engineering scaffolds and items for other biomedical applications are discussed.

...