Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39120431

RESUMEN

A few interactions should be considered during the detritylation reaction of solid-phase oligonucleotide synthesis (SPOS): (i) interaction of solvent with acid; (ii) interaction (or reaction) of solvent with trityl cation, and (iii) interaction of scavenger with acid, with the last one as the focus of this work. Using a stopped-flow setup, commonly used trityl cation scavengers (methanol, thioanisole, 1-dodecanethiol, triisopropylsilane, triethylsilane, and trihexylsilane) were evaluated for their reactivity toward tritylium hexafluorophosphate. Among the scavengers screened, methanol and thioanisole were found to be the most and least reactive, respectively; however, methanol does interact and react with trichloroacetic acid, thus it should not be pre-mixed and stored with acid as deblock solutions. Overall, all aspects of interactions must be taken into consideration while optimizing the detritylation reaction, especially for large scale SPOS.

2.
Chemistry ; : e202402687, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158121

RESUMEN

Generally, an esterase lipase enzyme can hydrolyze specific substrates called esters in an aqueous solution. Herein, we investigate how a G-quadruplex self-assembly affects the hydrolysis equilibrium in reverse. The biocatalyst, lipase, activates the individual building-blocks through fuel consumption, causing them to undergo a higher degree of self-organization into nanofibers within spheres. We have synthesized five peptide-lipid-conjugated guanine base functionalized molecules to explore how the equilibrium can be shifted through reverse hydrolysis. Among these, NAC5 self-assembled into a G-quadruplex structure which has been confirmed by various spectroscopic techniques. The wide-angle powder XRD, ThT dye binding assay and circular dichroism study is carried out to support the presence of the G-quadruplex structure. The biocatalytic formation of nanofibers enclosed spheres is analyzed using CLSM, FE-SEM and HR-TEM experiments. Additionally, we assess the biocompatibility of the enzyme fueled dissipative self-assembled fibers enclosed spheres, as they have potential applications as a biomaterial in protocells. MTT assay is performed to check the cytotoxicity of G-quadruplex hydrogel, using HEK 293 and McCoy cell lines for viability assessment. Finally, the utility of the novel NAC5 hydrogel as a wound repairing biomaterial is demonstrated by cell migration experiment in a scratch assay.

3.
Angew Chem Int Ed Engl ; 63(33): e202405040, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38785103

RESUMEN

Nucleoside and nucleotide analogues have proven to be transformative in the treatment of viral infections and cancer. One branch of structural modification to deliver new nucleoside analogue classes explores replacement of canonical ribose oxygen with a sulfur atom. Whilst biological activity of such analogues has been shown in some cases, widespread exploration of this compound class is hitherto hampered by the lack of a straightforward and universal nucleobase diversification strategy. Herein, we present a synergistic platform enabling both biocatalytic nucleobase diversification from 4'-thiouridine in a one-pot process, and chemical functionalization to access new entities. This methodology delivers entry across pyrimidine and purine 4'-thionucleosides, paving a way for wider synthetic and biological exploration. We exemplify our approach by enzymatic synthesis of 5-iodo-4'-thiouridine on multi-milligram scale and from here switch to complete chemical synthesis of a novel nucleoside analogue probe, 5-ethynyl-4'-thiouridine. Finally, we demonstrate the utility of this probe to monitor RNA synthesis in proliferating HeLa cells, validating its capability as a new metabolic RNA labelling tool.


Asunto(s)
ARN , Tionucleósidos , Tiouridina , Tiouridina/análogos & derivados , Tiouridina/química , Tiouridina/metabolismo , Humanos , Tionucleósidos/química , Tionucleósidos/metabolismo , Tionucleósidos/síntesis química , ARN/metabolismo , ARN/química , Células HeLa , Biocatálisis , Estructura Molecular
4.
Chem Asian J ; 19(11): e202400114, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38598666

RESUMEN

Herein, we report an in-situ mild and metal-free protocol for thiomethylation of heteroarenes in high yields. The thiomethylation of various chloropurines, nucleosides, and chloroheteroarenes has been accomplished offering easy access to agrochemicals and synthetic molecules useful for drug discovery.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38602371

RESUMEN

Dichloroacetic acid or trichloroacetic acid are commonly used in the detritylation reaction of the automated solid-phase synthesis of oligonucleotides. Dichloroacetic acid, however, is often contaminated with trichloroacetaldehyde (chloral), leading to the formation of inseparable impurities in the final oligonucleotide product. In this work, three different sequences, namely T18, d(TAA)6, and an 18-mer mixed sequence, were used as models to compare the deprotection efficiency of three acids: trichloroacetic acid, dichloroacetic acid, and difluoroacetic acid. Comparable purities of full-length products were obtained for the synthesis of the three model sequences when dichloroacetic acid or difluoroacetic acid were used during the detritylation reaction, however, conditions need to be optimized for the synthesis of purine-rich sequences. Therefore, difluoroacetic acid is a potential alternative to dichloroacetic acid in the solid-phase synthesis of oligonucleotides to avoid the impurity formation due to presence of chloral.

6.
Curr Protoc ; 4(3): e999, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439607

RESUMEN

The synthesis of natural and chemically modified nucleosides and oligonucleotides is in great demand due to its increasing number of applications in diverse areas of research. These include tools for diagnostics and proteomics, research reagents for molecular biology, probes for functional genomics, and the design, discovery, development, and manufacture of new therapeutics. The likelihood of success in synthesizing these molecules is often dependent on the correct choice of a protection strategy to block the 5'-hydroxyl group of a carbohydrate moiety, nucleoside, or oligonucleotide. This topic was reviewed extensively in the year 2000. The purpose of this article is to complement and update the original review with recently published methodologies recommended for the protection and deprotection of the 5'-hydroxyl group. © 2024 Wiley Periodicals LLC.


Asunto(s)
Nucleósidos , Oligonucleótidos , Comercio , Genómica , Radical Hidroxilo
7.
Eur J Med Chem ; 268: 116235, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377828

RESUMEN

With the aim to identify new antiviral agents with antibacterial properties, a series of 2-quinolone-1,2,3-triazole derivatives bearing α-aminophosphonates was synthesized and characterized by 1H NMR, 13C NMR, 31P NMR, single crystal XRD and HRMS analyses. These compounds were examined against five RNA viruses (YFV, ZIKV, CHIKV, EV71 and HRV) from three distinct families (Picornaviridae, Togaviridae and Flaviviridae) and four bacterial strains (S. aureus, E. feacalis, E. coli and P. aeruginosa). The α-aminophosphonates 4f, 4i, 4j, 4k, 4p and 4q recorded low IC50 values of 6.8-10.91 µM, along with elevated selectivity indices ranging from 2 to more than 3, particularly against YFV, CHIKV and HRV-B14. Besides, the synthesized compounds were generally more sensitive toward Gram-positive bacteria, with the majority of them displaying significant potency against E. feacalis. Specifically, an excellent anti-enterococcus activity was obtained by compound 4q with MIC and MBC values of 0.03 µmol/mL, which were 8.7 and 10 times greater than those of the reference drugs ampicillin and rifampicin, respectively. Also, compounds 4f, 4p and 4q showed potent anti-staphylococcal activity with MIC values varying between 0.11 and 0.13 µmol/mL, compared to 0.27 µmol/mL for ampicillin. The results from DFT and molecular docking simulations were in agreement with the biological assays, proving the binding capability of hybrids 4f, 4i, 4j, 4k, 4p and 4q with viral and bacterial target enzymes through hydrogen bonds and other non-covalent interactions. The in silico ADME/Tox prediction revealed that these molecules possess moderate to good drug-likeness and pharmacokinetic properties, with a minimal chance of causing liver toxicity or carcinogenic effects.


Asunto(s)
Hidroxiquinolinas , Quinolonas , Infección por el Virus Zika , Virus Zika , Humanos , Antibacterianos/química , Estructura Molecular , Relación Estructura-Actividad , Triazoles/farmacología , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Escherichia coli , Ampicilina/farmacología , Antivirales/farmacología , Pruebas de Sensibilidad Microbiana
8.
ACS Omega ; 8(47): 44893-44904, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046329

RESUMEN

Nucleosides and their analogues constitute an important family of molecules with potential antiviral and antiproliferative activity. The enantiomers of natural nucleosides, l-nucleoside derivatives, which have comparable biological activity but more favorable toxicological properties and greater metabolic stability than d-nucleosides, have emerged as a new class of therapeutic agents. Furthermore, l-nucleosides can be used as a building block to prepare l-oligonucleotides, which have identical physical properties in terms of solubility, hybridization kinetics, and duplex thermal stability as d-oligonucleotides but completely orthogonal in nature. Consequently, they are resistant to nuclease degradation, nontoxic, and immunologically passive, which are desirable properties for biomedical applications. Herein, we describe the synthesis of several 2'-O-methyl/2'-O-MOE-l-nucleoside pyrimidine derivatives and their incorporation into G-rich oligonucleotides. Finally, we evaluated the stability and resistance against nucleases of these new G-quadruplexes, demonstrating the potential of the l-nucleosides described in this work in providing enhanced nuclease resistance with a minimal impact in the nucleic acid structural properties.

9.
Carbohydr Res ; 534: 108981, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992558

RESUMEN

An easy and efficient large-scale synthesis of 1, 2,-di-O-acetyl-5-O-benzoyl-3-O-methyl-d-ribofuranose (8) was accomplished from commercial 1,2:5,6-di-O-isopropylidene-α-d-allofuranose in 7-steps and 30 % overall yield. The utility of protected 8 was demonstrated via synthesis of 9-(3'-O-methyl-ß-d-ribofuranosyl)-6-chloropurine (21) and six other nucleoside analogues in good yields. A library of five novel base modified nucleosides were generated starting from purine nucleoside 21 via functional group manipulations. The 3'-O-modified nucleosides are known to act as chain terminator exerting antiviral activity. The synthesis strategy described herein offers direct access to 3'-O-alkylated nucleosides with wide range of applications, including cap analogues for mRNA vaccine production. This protocol provides a route to exclusive synthesis of 3'-O-alkylated nucleosides, devoid of isomeric 2'-O-alkylated products essential for both therapeutic and biological research.


Asunto(s)
Ribonucleósidos , Nucleósidos
10.
ACS Appl Bio Mater ; 6(12): 5301-5309, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37971725

RESUMEN

The development of biomolecule-derived biocompatible scaffolds for drug delivery applications is an emerging research area. Herein, we have synthesized a series of nucleobase guanine (G) functionalized amino acid conjugates having different chain lengths to study their molecular self-assembly in the hydrogel state. The gelation properties have been induced by the correct choice of chain lengths of fatty acids present in nucleobase functionalized molecules. The effect of alkali metal cations, pH, and the concentration of nucleobase functionalized amino acid conjugates in the molecular self-assembly process has been explored. The presence of Hoogsteen hydrogen bonding interaction drives the formation of a G-quadruplex functionalized hydrogel. The DOSY nuclear magnetic resonance is also performed to evaluate the self-assembling behavior of the newly formed nucleobase functionalized hydrogel. The nanofibrillar morphology is responsible for the formation of a hydrogel, which has been confirmed by various microscopic experiments. The mechanical behaviors of the hydrogel were evaluated by rheological experiments. The in vitro biostability of the synthesized nucleobase amino acid conjugate is also investigated in the presence of hydrolytic enzymes proteinase K and chymotrypsin. Finally, the nucleobase functionalized hydrogel has been used as a drug delivery platform for the control and sustained pH-responsive release of vitamins B2 and B12. This synthesized nucleobase functionalized hydrogel also exhibits noncytotoxic behavior, which has been evaluated by their in vitro cell viability experiment using HEK 293 and MCF-7 cell lines.


Asunto(s)
Hidrogeles , Vitaminas , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Preparaciones de Acción Retardada/farmacología , Células HEK293 , Aminoácidos/química
11.
Curr Protoc ; 3(9): e878, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37747330

RESUMEN

Starting from a commercially available thioether, we report a nine-step synthesis of a 4'-thiouridine phosphoramidite building-block. We install the uracil nucleobase using Pummerer-type glycosylation of a sulfoxide intermediate followed by a series of protecting group manipulations to deliver the desired phosphite. Notably, we introduce a 3',5'-O-di-tert-butylsilylene protecting group within a 4'-thiosugar framework, harnessing this to ensure regiospecific installation of the 2'-O-silyl protecting group. We envisage this methodology will be generally applicable to other 4'-thionucleosides and duly support the exploration of their inclusion within related nucleic acid syntheses. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: (2R,3S,4R)-2,3-O-Isopopropylidene-5-O-tert-butyldiphenylsilyl-1-(4-sulfinyl)cyclopentane: Sulfoxidation Basic Protocol 2: 2',3'-O-Isopropylidene-5'-O-tert-butyldiphenylsilyl-4'-thiouridine: Pummerer glycosylation Basic Protocol 3: 4'-Thiouridine: Deprotection Basic Protocol 4: 2'-O-tert-Butyldimethylsilyl-3',5'-di-tert-butylsiloxy-4'-thiouridine: 2',3',5'-O-silylation Basic Protocol 5: 2'-O-tert-Butyldimethylsilyl-4'-thiouridine: Selective 3'-5'-desilylation Basic Protocol 6: 2'-O-tert-Butyldimethylsilyl-5'-O-dimethoxytrityl-4'-thiouridine: 5'-O-dimethoxytritylation Basic Protocol 7: 2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethoxy)(N,N-diisopropylamino)phosphino]-5'-O-dimethoxytrityl-4'-thiouridine: 3'-O-phosphitylation.


Asunto(s)
Tionucleósidos , Tiouridina , Sistema del Grupo Sanguíneo ABO , Oligonucleótidos
12.
J Flow Chem ; : 1-18, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-37359287

RESUMEN

Nucleosides modification via conventional cross-coupling has been performed using different catalytic systems and found to take place via long reaction times. However, since the pandemic, nucleoside-based antivirals and vaccines have received widespread attention and the requirement for rapid modification and synthesis of these moieties has become a major objective for researchers. To address this challenge, we describe the development of a rapid flow-based cross-coupling synthesis protocol for a variety of C5-pyrimidine substituted nucleosides. The protocol allows for facile access to multiple nucleoside analogues in very good yields in a few minutes compared to conventional batch chemistry. To highlight the utility of our approach, the synthesis of an anti-HSV drug, BVDU was also achieved in an efficient manner using our new protocol. Supplementary Information: The online version contains supplementary material available at 10.1007/s41981-023-00265-1.

13.
Chem Asian J ; 18(1): e202201006, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36355632

RESUMEN

The dimethylamino functionality has significant importance in industrially relevant molecules and methodologies to install these efficiently are highly desirable. We report herein a highly efficient, room-temperature dimethylamination of chloroheteroarenes performed via the in-situ generation of dimethylamine using N,N-dimethylformamide (DMF) as precursor wiith a large substrate scope that includes various heteroarenes, purines as well as commercially relevant drugs such as altretamine, ampyzine and puromycin precursor.


Asunto(s)
Dimetilformamida , Temperatura , Dimetilformamida/química , Catálisis
14.
Mol Divers ; 27(5): 2147-2159, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36251201

RESUMEN

A new series of 3-acetyl-1,3,4-oxadiazoline hybrid molecules was designed and synthesized using a condensation between acyclonucleosides and substituted phenylhydrazone. All intermediates and final products were screened against Leishmania donovani, a Protozoan parasite and against three viruses SARS-CoV-2, HCMV and VZV. While no significant activity was observed against the viruses, the intermediate with 6-azatymine as thymine and 5-azathymine-3-acetyl-1,3,4-oxadiazoline hybrid exhibited a significant antileishmanial activity. The later compound was the most promising, exhibiting an IC50 value at 8.98 µM on L. donovani intramacrophage amastigotes and a moderate selectivity index value at 2.4.


Asunto(s)
Antiprotozoarios , COVID-19 , Leishmania donovani , Humanos , Pirimidinas/farmacología , Antivirales/farmacología , SARS-CoV-2 , Antiprotozoarios/farmacología
15.
Curr Protoc ; 2(11): e602, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36440983

RESUMEN

We present an improved synthesis of (S)-HPMPA (1) from an easily accessible and commercially available compound, (S)-3-(benzyloxy)propane-1,2-diol (10). Tritylation of primary alcohol 10 was highly selective, and pure product was isolated in good yield. Alkylation of (R)-1-(benzyloxy)-3-(trityloxy)propan-2-ol (11) with diethyl p-toluenesulfonyloxymethyl phosphonate (6) using sodium hydride in tetrahydrofuran followed by detritylation afforded the desired chiral synthon 12. Tosylation of the primary alcohol and subsequent reaction with sodium adeninate afforded protected S-HPMPA (14). Global deprotection using concentrated hydrochloric acid in a sealed tube afforded S-HPMA (1), and the deprotected 1 was crystallized from water and acetone to obtain a 99% pure product. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of (R)-1-(benzyloxy)-3-(trityloxy)propan-2-ol (11) Basic Protocol 2: Preparation of diethyl (S)-(((1-(benzyloxy)-3-hydroxypropan-2-yl)oxy)methyl)phosphonate (12) Basic Protocol 3: Preparation of (R)-3-(benzyloxy)-2-((diethoxyphosphoryl)methoxy)propyl-4-methylbenzenesulfonate (13) Basic Protocol 4: Preparation of diethyl (S)-(((1-(6-amino-9H-purin-9-yl)-3-(benzyloxy)propan-2-yl)oxy)methyl)phosphonate (14) Support Protocol 1: Preparation of sodium adeninate Basic Protocol 5: Preparation of (S)-(((1-(6-amino-9H-purin-9-yl)-3-hydroxypropan-2-yl)oxy)methyl)phosphonic acid (1).


Asunto(s)
Antivirales , Organofosfonatos , Antivirales/farmacología , Adenina , 2-Propanol , Etanol , Sodio
16.
J Mol Struct ; : 134135, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36101881

RESUMEN

Analogs of pyrimidine and 1,3,4-oxadiazole are two well established class of molecules proven as potent antiviral and anticancer agents in the pharmaceutical industry. We envisioned designing new molecules where these two heterocycles were conjugated with the goal of enhancing biological activity. In this vein, we synthesized a series of novel pyrimidine-1,3,4-oxadiazole conjugated hybrid molecules as potential anticancer and antiviral agents. Herein, we present a new design for 5-fluorocytosine-1,3,4-oxadiazole hybrids (5a-h) connected via a methylene bridge. An efficient synthesis of new derivatives was established, and all compounds were fully characterized by NMR and MS. Eight compounds were evaluated for their cytotoxic activity against fibrosarcoma (HT-1080), breast (MCF-7 and MDA-MB-231), lung carcinoma (A-549), and for their antiviral activity against SARS-CoV-2. Among all compounds tested, the compound 5e showed marked growth inhibition against all cell lines tested, particularly in HT-1080, with IC50 values of 19.56 µM. Meanwhile, all tested compounds showed no anti-SARS-CoV-2 activity, with EC50 >100 µM. The mechanism of cell death was investigated using Annexin V staining, caspase-3/7 activity, and analysis of cell cycle progression. The compound 5e induced apoptosis by the activation of caspase-3/7 and cell-cycle arrest in HT-1080 and A-549 cells at the G2M phase. The molecular docking suggested that the compound 5e activated caspase-3 via the formation of a stable complex protein-ligand.

17.
Carbohydr Res ; 520: 108645, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35964481

RESUMEN

A glycal based expeditious synthesis of novel nucleoside analogues of (+)-anisomycin is reported. Readily available tri-O-benzyl-D-glucal was converted to a partially protected trihydroxypyrrolidine that is used as a common scaffold for the introduction of various nucleobases at the primary hydroxyl centre. Nucleoside analogues possessing all four DNA bases have been synthesized. Selective acetylation at C3 position was carried out with two of these unnatural nucleosides in order to mimic the structure of (+)-anisomycin. Cytotoxicity studies of some of these nucleosides showed that they display weaker activity on HeLa cells than Ara-C.


Asunto(s)
ADN , Nucleósidos , Anisomicina , ADN/química , Células HeLa , Humanos , Nucleósidos/química
18.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807233

RESUMEN

An improved protocol for the transformation of ribonucleosides into 2',3'-dideoxynucleoside and 2',3'-didehydro-2',3'-dideoxynucleoside derivatives, including the anti-HIV drugs stavudine (d4T), zalcitabine (ddC) and didanosine (ddI), was established. The process involves radical deoxygenation of xanthate using environmentally friendly and low-cost reagents. Bromoethane or 3-bromopropanenitrile was the alkylating agent of choice to prepare the ribonucleoside 2',3'-bisxanthates. In the subsequent radical deoxygenation reaction, tris(trimethylsilyl)silane and 1,1'-azobis(cyclohexanecarbonitrile) were used to replace hazardous Bu3SnH and AIBN, respectively. In addition, TBAF was substituted for camphorsulfonic acid in the deprotection step of the 5'-O-silyl ether group, and an enzyme (adenosine deaminase) was used to transform 2',3'-dideoxyadenosine into 2',3'-dideoxyinosine (ddI) in excellent yield.


Asunto(s)
Fármacos Anti-VIH , Zidovudina , Didanosina , Didesoxinucleósidos , Estavudina , Zalcitabina
19.
Curr Protoc ; 2(7): e502, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35895086

RESUMEN

Modification of nucleosides via cross-coupling processes has been carried out extensively on unprotected halonucleosides to produce functionalized nucleosides that are often developed for incorporation into oligonucleotides or used as fluorescent probes. This approach requires protection of the 5'-OH with the 4,4'-dimethoxytrityl (DMTr) group, which is complicated and a common cause of reaction failure. Here we report a method for direct functionalization of 5'-O-DMTr-5-iodo-2'-deoxyuridine via Suzuki-Miyaura cross-coupling, Heck alkenylation, and carboamidation. This approach facilitates rapid synthesis of a variety of C5-substituted 5'-O-DMTr-2'-deoxyuridine derivatives. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of the SerrKap palladacycle complex Basic Protocol 2: Suzuki-Miyaura coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine using SerrKap palladacycle Basic Protocol 3: Heck coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine using SerrKap palladacycle Basic Protocol 4: Heck coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine with Ruth linker using Pd(OAc)2 /PTABS Basic Protocol 5: Carbonylative amidation of 5'-O-DMTr-5-iodo-2'-deoxyuridine using Pd(OAc)2 /PTABS.


Asunto(s)
Idoxuridina , Paladio , Catálisis , Nucleósidos , Oligonucleótidos
20.
Chem Rec ; 22(9): e202200066, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35638251

RESUMEN

Fluorinated nucleosides and oligonucleotides are of specific interest as probes for studying nucleic acids interaction, structures, biological transformations, and its biomedical applications. Among various modifications of oligonucleotides, fluorination of preformed nucleoside and/or nucleotides have recently gained attention owing to the unique properties of fluorine atoms imparting medicinal properties with respect to the small size, electronegativity, lipophilicity, and ability for stereochemical control. This review deals with synthetic protocols for selective fluorination either at sugar or base moiety in a preformed nucleosides, nucleotides and nucleic acids using specific fluorinating reagents.


Asunto(s)
Ácidos Nucleicos , Nucleósidos , Flúor/química , Ácidos Nucleicos/química , Nucleótidos , Oligonucleótidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA