Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 260: 124650, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167679

RESUMEN

The sensitivity of ELISA-based devices strongly depends on the right orientation of antibodies on the sensor surface. The aim of this work was to increase the analytical performance of a commercial ELISA-based medical device (VIDAS®), thanks to the specific orientation of antibodies on gold nanostructured disposables. For this purpose, fPSA VIDAS® assay was used as model and the disposable providing the antigen binding surface (SPR®) was functionalized with gold nanostructures coated with monovalent half-fragment antibodies (reduced IgG, rIgG). The functionalization of polystyrene SPRs® with gold nanostructures was achieved through a one-step incubation of gold dispersions in a mixture of non-toxic solvents. Five different concentrations of gold nanoparticles (NPs) were tested with a maximum fluorescence enhancement for NPs density around 3-8 *103 NPs/µm2 (752 ± 11 RFV vs 316 ± 5 RFV of bare SPRs®). The comparison of the dose-response curve obtained with commercial and gold coated-SPRs® revealed a significant improvement (p < 0.0001) of the analytical sensitivity of the VIDAS® system using nanostructured disposables. This improved version of SPRs® allows to distinguish small variations of fPSA concentrations opening the way to the application of this biomarker to other kinds of cancer as recently described in the literature.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Anticuerpos/química , Ensayo de Inmunoadsorción Enzimática
2.
Pharmaceutics ; 15(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37111614

RESUMEN

Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a progressive and increasingly recognized cause of heart failure which is associated with high mortality and morbidity. ATTR-CM is characterized by the misfolding of TTR monomers and their deposition within the myocardium as amyloid fibrils. The standard of care for ATTR-CM consists of TTR-stabilizing ligands, such as tafamidis, which aim at maintaining the native structure of TTR tetramers, thus preventing amyloid aggregation. However, their efficacy in advanced-staged disease and after long-term treatment is still a source of concern, suggesting the existence of other pathogenetic factors. Indeed, pre-formed fibrils present in the tissue can further accelerate amyloid aggregation in a self-propagating process known as "amyloid seeding". The inhibition of amyloidogenesis through TTR stabilizers combined with anti-seeding peptides may represent a novel strategy with additional benefits over current therapies. Finally, the role of stabilizing ligands needs to be reassessed in view of the promising results derived from trials which have evaluated alternative strategies, such as TTR silencers and immunological amyloid disruptors.

3.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293061

RESUMEN

Gamma-glutamyl transferase (GGT) is involved in the progression of atherosclerosis, since its enzymatic activity promotes the generation of reactive oxygen species (ROS). Besides, GGT may act as a prothrombotic factor by inducing tissue factor (TF) expression, independently of its enzymatic activity. The aim of this study was to assess whether GGT-induced TF stimulation was a consequence of binding to toll-like receptor 4 (TLR4) expressed on monocytes, the precursors of macrophages and foam cells which colocalize with GGT activity within atherosclerotic plaques. Experiments were performed in human peripheral blood mononuclear cells (PBMCs), THP-1 cells (a monocytic cellular model), and HEK293 cells, which were genetically modified to study the activation of TLR4. TF procoagulant activity was assessed by a one-stage clotting time test, and TF protein expression was estimated by western blot. Human recombinant (hr) GGT protein increased TF procoagulant activity and protein expression in both PBMCs and THP-1 cells. The GGT-induced TF stimulation was prevented by cellular pretreatment with TLR4/NF-κB inhibitors (LPS-Rs, CLI-095, and BAY-11-7082), and HEK293 cells lacking TLR4 confirmed that TLR4 is essential for GGT-induced activation of NF-κB. In conclusion, hrGGT induced TF expression in monocytes through a cytokine-like mechanism that involved the activation of TLR4/NF-κB signaling.


Asunto(s)
Tromboplastina , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Tromboplastina/metabolismo , Monocitos/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Leucocitos Mononucleares/metabolismo , Células HEK293 , Citocinas/metabolismo , Transferasas/metabolismo
4.
Biomedicines ; 10(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36009453

RESUMEN

Transthyretin (TTR) is a homotetrameric protein mainly synthesised by the liver and the choroid plexus whose function is to carry the thyroid hormone thyroxine and the retinol-binding protein bound to retinol in plasma and cerebrospinal fluid. When the stability of the tetrameric structure is lost, it breaks down, paving the way for the aggregation of TTR monomers into insoluble fibrils leading to transthyretin (ATTR) amyloidosis, a progressive disorder mainly affecting the heart and nervous system. Several TTR gene mutations have been characterised as destabilisers of TTR structure and are associated with hereditary forms of ATTR amyloidosis. The reason why also the wild-type TTR is intrinsically amyloidogenic in some subjects is largely unknown. The aim of the review is to give an overview of the TTR biological life cycle which is largely unknown. For this purpose, the current knowledge on TTR physiological metabolism, from its synthesis to its catabolism, is described. Furthermore, a large section of the review is dedicated to examining in depth the role of mutations and physiological ligands on the stability of TTR tetramers.

5.
Mol Biol Rep ; 49(5): 4129-4134, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35412175

RESUMEN

BACKGROUND: Proprotein convertase subtilisin kexin 9 (PCSK9) is a serin protease synthesized mainly in the liver that binds the receptor of low-density lipoprotein and promotes its degradation in lysosomes. PCSK9 is considered a promising target for the development of new therapies for the treatment of hypercholesterolemia and related cardiovascular diseases. Extracellular vesicles represent a heterogeneous population of vesicles, ranging in size between 0.05 and 1 µm involved in numerous pathophysiological processes, including blood coagulation. We investigated whether PCSK9 stimulation induces the release of procoagulant extracellular vesicles from human mononuclear cells (PBMCs) and THP-1 cells. METHODS AND RESULTS: PBMCs and THP-1 cells were stimulated whit PCSK9, the generation of EV was assessed by the prothrombinase assay and by cytofluorimetric analysis. EV-associated tissue factor activity was assessed by a one-stage clotting assay. PCSK9 induced an increase in extracellular generation by PBMCs and THP-1 cells as well as an increase in extracellular vesicle-associated tissue factor. Pre-treatment with inhibitors of the toll like receptor, TLR4 (C34), and of NF-κB signaling (BAY 11-7082), downregulated PCSK9-induced extracellular vesicle generation and of extracellular- bound tissue factor. Similar effect was obtained by an anti-PCSK9 human-monoclonal antibody. CONCLUSIONS: PCSK9-mediated generation of procoagulant EV could contribute to increase the prothrombotic status in patients with cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Proproteína Convertasa 9/metabolismo , Receptores de LDL , Subtilisinas , Tromboplastina
6.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884442

RESUMEN

Proprotein convertase subtilisin kexin 9 (PCSK9) increases LDL cholesterol (C) concentration by accelerating the hepatic degradation of the LDL receptor (R) thus promoting atherogenesis. The molecule, however, also exerts proinflammatory effects independent of circulating LDL-C by enhancing local cytokine production and activation of NFkB, a process that might involve Toll-like receptor 4 (TLR4), a crucial component of the innate immunity system. Tissue factor (TF), a glycoprotein which plays an essential role in coagulation and inflammation, is rapidly induced by circulating monocytes stimulated by proinflammatory agents through NFkB-dependent mechanisms. The aims of our study were (1) to assess whether PCSK9 may induce monocytic TF expression and (2) to evaluate whether the TLR4/NFkB signaling pathway may contribute to that effect. Experiments were carried out in peripheral blood mononuclear cells (PBMCs), THP-1 cells, and HEK293 cells transfected with plasmids encoding the human TLR4 complex. PCSK9 increased procoagulant activity (PCA), mRNA and TF protein expression in both PBMCs and THP-1 cultures. Pre-treatment with inhibitors of TLR4/NFkB signaling such as LPS-RS, CLI-095, and BAY 11-7082, downregulated PCSK9-induced TF expression. A similar effect was obtained by incubating cell cultures with anti-PCSK9 human monoclonal antibody. In TLR4-HEK293 cells, PCSK9 activated the TLR4/NFkB signaling pathway to an extent comparable to LPS, the specific agonist of TLR4s and quantitative confocal microscopy documented the colocalization of PCSK9 and TLR4s. In conclusion, PCSK9 induces TF expression through activation of TLR4/NFkB signaling.


Asunto(s)
Monocitos/citología , Proproteína Convertasa 9/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo , Receptor Toll-Like 4/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Microscopía Confocal , Monocitos/efectos de los fármacos , Monocitos/metabolismo , FN-kappa B/metabolismo , Nitrilos/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonas/farmacología , Células THP-1 , Receptor Toll-Like 4/metabolismo , Transfección , Regulación hacia Arriba/efectos de los fármacos
7.
Cancer Cell Int ; 19: 223, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467489

RESUMEN

BACKGROUND: Neoplastic cells promote a hypercoagulable state by the expression of cell surface proteins, such as tissue factor. In BRAFv600 mutated melanoma patients upon BRAF inhibitors, a hypercoagulable state correlates with prognosis, while a down-regulation of the hemostatic parameters is observed in patients responders as compared to non responders. The present study was intended to better clarify the strict relationship between coagulation mediators and target therapy in melanoma. METHODS: The expression of tissue factor was investigated after the treatment with the BRAF inhibitor Dabrafenib and the MEK inhibitor Trametinib in the BRAFv600e mutated melanoma cell lines A-375 and SK-MEL-28, together with its ability to activate the coagulation cascade. RESULTS: Dabrafenib and Trametinib caused the down-regulation of TF in both cell lines A-375 and SK-MEL-28. For the cell line A-375 the effect was evident both at RNA and procoagulant activity; for the cell line SK-MEL-28 only at RNA level without any variation of the protein. Interestingly, when in contact with plasma deficient of factor VII, both cell lines were not able to activate the coagulation cascade. CONCLUSIONS: The present study provides the first in vitro observation that tissue factor expressed in melanoma cells may contribute to the modulation of the coagulation state of patients in the treatment with BRAF inhibitors.

8.
Sci Rep ; 9(1): 11631, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406171

RESUMEN

Tiotropium is a muscarinic antagonist that reduces the risk of acute exacerbations of chronic obstructive pulmonary disease, possibly through an as yet incompletely characterized anti-inflammatory activity. We hypothesized that muscarinic activation of bronchial epithelial cells and endothelial cells causes the release of proinflammatory microparticles and that tiotropium inhibits the phenomenon. Microparticle generation was assessed by a functional assay, by flow cytometry and by NanoSight technology. Immortalized bronchial epithelial cells (16HBE) and umbilical vein endothelial cells were treated with acetylcholine in the presence of varying concentrations of tiotropium. Intracellular calcium concentration, extracellular regulated kinase phosphorylation and chemokine content in the conditioned media were assessed by commercial kits. Acetylcholine causes microparticle generation that is completely inhibited by tiotropium (50 pM). Microparticles generated by acetylcholine-stimulated cells increase the synthesis of proinflammatory mediators in an autocrine fashion. Acetylcholine-induced upregulation of microparticle generation is inhibited by an inhibitor of extracellular regulated kinase phosphorylation and by a phospholipase C inhibitor. Tiotropium blocks both extracellular regulated kinase phosphorylation and calcium mobilization, consistent with the hypothesis that the drug prevents microparticle generation through inhibition of these critical pathways. These results might contribute to explain the effect of tiotropium in reducing acute exacerbations of chronic obstructive pulmonary disease.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Bromuro de Tiotropio/farmacología , Bronquios/citología , Bronquios/inmunología , Calcio/metabolismo , Línea Celular , Micropartículas Derivadas de Células/inmunología , Quimiocinas/inmunología , Quimiocinas/metabolismo , Medios de Cultivo Condicionados/metabolismo , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Antagonistas Muscarínicos/uso terapéutico , Fosforilación/efectos de los fármacos , Fosforilación/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Bromuro de Tiotropio/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA