Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 81(7): 189, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38789812

RESUMEN

The flooding pampa is one of the most important cattle-raising regions in Argentina. In this region, natural pastures are dominated by low-productivity native grass species, which are the main feed for livestock. In this context, previous studies in the region with the subtropical exotic grass Panicum coloratum highlight it as a promising species to improve pasture productivity. Cultivable phosphate solubilizing bacteria (PSB) communities associated to native (Sporobolus indicus) and exotic (Panicum coloratum) forage grasses adapted to alkaline-sodic soils of the flooding pampa were analyzed. PSB represented 2-14% of cultivable rhizobacteria and Box-PCR fingerprinting revealed a high genetic diversity in both rhizospheres. Taxonomic identification by MALDI-TOF showed that PSB populations of P. coloratum and S. indicus rhizospheres are dominated by the phylum Proteobacteria (92,51% and 96,60% respectively) and to a lesser extent (< 10%), by the phyla Actinobacteria and Firmicutes. At the genus level, both PSB populations were dominated by Enterobacter and Pseudomonas. Siderophore production, nitrogen fixation, and indoleacetic acid production were detected in a variety of PSB genera of both plant species. A higher proportion of siderophore and IAA producers were associated to P. coloratum than S. indicus, probably reflecting a greater dependence of the exotic species on rhizospheric microorganisms to satisfy its nutritional requirements in the soils of the flooding pampa. This work provides a novel knowledge about functional groups of bacteria associated to plants given that there are no previous reports dedicated to the characterization of PSB rhizosphere communities of S indicus and P coloratum. Finally, it should be noted that the collection obtained in this study can be useful for the development of bioinputs that allow reducing the use of chemical fertilizers, providing sustainability to pasture production systems for livestock.


Asunto(s)
Bacterias , Fosfatos , Poaceae , Rizosfera , Microbiología del Suelo , Suelo , Poaceae/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Suelo/química , Fosfatos/metabolismo , Argentina , Animales , Filogenia , Sideróforos/metabolismo , Fijación del Nitrógeno , Ácidos Indolacéticos/metabolismo , Inundaciones , ARN Ribosómico 16S/genética
2.
Syst Appl Microbiol ; 43(1): 126044, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31810817

RESUMEN

Three symbiotic nitrogen-fixing bacteria (BD68T, BD66 and BD73) isolated from root nodules of Lotus tenuis in lowland soils of the Flooding Pampa (Argentina), previously classified as members of the Mesorhizobium genus, were characterized in this study. Phylogenetic analysis of their 16S rRNA gene sequences showed a close relationship to M. japonicum MAFF 303099T, M. erdmanii USDA 3471T, M. carmichaelinearum ICMP 18942T, M. opportunistum WSM 2975T and M. jarvisii ATCC 33699T, with sequence identities of 99.72%-100%. Multilocus sequence analysis of other housekeeping genes revealed that the three isolates belonged to a phylogenetically distinct clade within the genus Mesorhizobium. Strain BD68T was designated as the group representative and its genome was fully sequenced. The average nucleotide identity and in silico DNA-DNA hybridization comparisons between BD68T and the most related type strains showed values below the accepted threshold for species discrimination. Phenotypic and chemotaxonomic features were also studied. Based on these results, BD68T, BD66 and BD73 could be considered to represent a novel species of the genus Mesorhizobium, for which the name Mesorhizobium intechi sp. nov. is hereby proposed. The type strain of this species is BD68T (=CECT 9304T=LMG 30179T).


Asunto(s)
Lotus/microbiología , Mesorhizobium/clasificación , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Argentina , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genes Bacterianos/genética , Genes Esenciales/genética , Genoma Bacteriano/genética , Mesorhizobium/química , Mesorhizobium/citología , Mesorhizobium/fisiología , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
3.
Antonie Van Leeuwenhoek ; 99(2): 371-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20811776

RESUMEN

The Flooding Pampa (FP) is the most important area for cattle breeding in Argentina. In this region, persistence and yield of typical forage legumes are strongly limited by soil salinity and alkalinity, which affect around 30% of the total area. Instead, naturalized Lotus tenuis is the main forage legume in this region. Rhizobial strains currently used for inoculating L. tenuis in the FP are exotic or native from non-saline soils of this region, their taxonomic identity being unknown. Assuming that rhizobia native from the most restrictive environments are well adapted to adverse conditions, the use of such isolates could improve the productivity of L. tenuis in the FP. Hence, the goal of this study was to evaluate the symbiotic efficiency of selected L. tenuis rhizobia native from the FP, as compared with strains currently used for field inoculation of this legume. Under non-stressing conditions, the symbiotic performance of native strains of FP exceeded those ones currently used for L. tenuis. Moreover, the symbiotic performance of the native strain ML103 was considerably high under salt stress, compared with strains currently used as inoculants. Analysis of 16S rRNA gene sequencing revealed that unclassified rhizobia currently used for field inoculation of L. tenuis and native strains grouped with the genus Mesorhizobium. As a whole, results obtained demonstrate that soils of the FP are a source of efficient and diverse rhizobia that could be used as a sustainable agronomic tool to formulate inoculants that improve forage yield of L. tenuis in this region.


Asunto(s)
Alphaproteobacteria/clasificación , Alphaproteobacteria/fisiología , Lotus/microbiología , Microbiología del Suelo , Simbiosis , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Crianza de Animales Domésticos , Animales , Argentina , Bovinos , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
Mycorrhiza ; 18(6-7): 317-29, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18654803

RESUMEN

Our hypothesis is that Lotus glaber (a glycophytic species, highly tolerant to saline-alkaline soils) displays a plastic root phenotypic response to soil salinity that may be influenced by mycorrhizal and rhizobial microorganisms. Uninoculated plants and plants colonised by Glomus intraradices or Mesorhizobium loti were exposed to either 150 or 0 mM NaCl. General plant growth and root architectural parameters (morphology and topology) were measured and phenotypic plasticity determined at the end of the salt treatment period. Two genotypes differing in their salt tolerance capacity were used in this study. G. intraradices and M. loti reduced the total biomass of non-salinised, sensitive plants, but they did not affect that of corresponding tolerant ones. Root morphology of sensitive plants was greatly affected by salinity, whereas mycorrhiza establishment counteracted salinity effects. Under both saline conditions, the external link length and the internal link length of mycorrhizal salt-sensitive plants were higher than those of uninoculated control and rhizobial treatments. The topological trend (TT) was strongly influenced by genotype x symbiosis interaction. Under non-saline conditions, nodulated root systems of the sensitive plant genotype had a more herringbone architecture than corresponding uninoculated ones. At 150 mM NaCl, nodulated root systems of tolerant plants were more dichotomous and those of the corresponding sensitive genotype more herringbone in architecture. Notwithstanding the absence of a link between TTs and variations in plant growth, it is possible to predict a dissimilar adaptation of plants with different TTs. Root colonisation by either symbiotic microorganisms reduced the level of root phenotypic plasticity in the sensitive plant genotype. We conclude that root plasticity could be part of the general mechanism of L. glaber salt tolerance only in the case of non-symbiotic plants.


Asunto(s)
Hongos/fisiología , Lotus/fisiología , Micorrizas/fisiología , Raíces de Plantas/fisiología , Rhizobium/fisiología , Cloruro de Sodio/farmacología , Respuesta al Choque Térmico , Lotus/crecimiento & desarrollo , Lotus/microbiología , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Especificidad de la Especie , Simbiosis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...