Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36079671

RESUMEN

Genome-environment Associations (GEA) or Environmental Genome-Wide Association scans (EnvGWAS) have been poorly applied for studying the genomics of adaptive traits in bread wheat landraces (Triticum aestivum L.). We analyzed 990 landraces and seven climatic variables (mean temperature, maximum temperature, precipitation, precipitation seasonality, heat index of mean temperature, heat index of maximum temperature, and drought index) in GEA using the FarmCPU approach with GAPIT. Historical temperature and precipitation values were obtained as monthly averages from 1970 to 2000. Based on 26,064 high-quality SNP loci, landraces were classified into ten subpopulations exhibiting high genetic differentiation. The GEA identified 59 SNPs and nearly 89 protein-encoding genes involved in the response processes to abiotic stress. Genes related to biosynthesis and signaling are mainly mediated by auxins, abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and jasmonates (JA), which are known to operate together in modulation responses to heat stress and drought in plants. In addition, we identified some proteins associated with the response and tolerance to stress by high temperatures, water deficit, and cell wall functions. The results provide candidate regions for selection aimed to improve drought and heat tolerance in bread wheat and provide insights into the genetic mechanisms involved in adaptation to extreme environments.

2.
Plants (Basel) ; 11(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684235

RESUMEN

Emmer wheat (Triticum turgidum ssp. dicoccum) is one of the world's oldest domesticated crops, and it harbors a potentially rich reservoir of agronomic and nutritional quality trait variations. The growing global demand for plant-based health-food niche markets has promoted new commercial interest in ancient grains, including Emmer wheat. Although T. dicoccum can also perform well under harsh environments, its cultivation along the Mediterranean agro-ecosystems is sparse. Here, we analyze a unique tetraploid wheat collection (n = 121) representing a wide geographic range of Emmer accessions, using 9897 DArTseq markers and on-field phenotypic characterization to quantify the extent of diversity among populations and the interactions between eco-geographic, genetic, and phenotypic attributes. Population genomic inferences based on the DArTseq data indicated that the collection could be split into four distinguished clusters in accordance with their eco-geographic origin although significant phenotypic variation was observed within clusters. Superior early vegetative vigor, shorter plant height, and early phenology were observed among emmer wheat accessions from Ethiopia compared to accessions from northern regions. This adaptive advantage highlights the potential of emmer wheat as an exotic germplasm for wheat improvement through breeding. The direct integration of such germplasm into conventional or organic farming agro-systems under the Mediterranean basin climate is also discussed.

3.
PLoS One ; 16(1): e0246015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33513167

RESUMEN

Deploying under-utilized landraces in wheat breeding has been advocated to accelerate genetic gains in current era of genomics assisted breeding. Mexican bread wheat landraces (Creole wheats) represent an important resource for the discovery of novel alleles including disease resistance. A core set of 1,098 Mexican landraces was subjected to multi-location testing for rust diseases in India, Mexico and Kenya. The landrace core set showed a continuous variation for yellow (YR) and stem rust (SR) disease severity. Principal component analysis differentiated Mexican landraces into three groups based on their respective collection sites. Linkage disequilibrium (LD) decay varied from 10 to 32 Mb across chromosomes with an averge of 23Mb across whole genome. Genome-wide association analysis revealed marker-trait associations for YR resistance in India and Mexico as well as for SR resistance in Kenya. In addition, significant additive-additive interaction effects were observed for both YR and SR resistance including genomic regions on chromosomes 1BL and 3BS, which co-locate with pleiotropic genes Yr29/Lr46/Sr58/Pm39/Ltn2 and Sr2/Yr30/Lr27, respectively. Study reports novel genomic associations for YR (chromosomes 1AL, 2BS, and 3BL) and SR (chromosomes 2AL, 4DS, and 5DS). The novel findings in Creole wheat landraces can be efficiently utilized for the wheat genetic improvement.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Mapeo Cromosómico , Genoma de Planta , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo
4.
Sci Rep ; 9(1): 12355, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451719

RESUMEN

Synthetic hexaploid (SH) wheat (AABBD'D') is developed by artificially generating a fertile hybrid between tetraploid durum wheat (Triticum turgidum, AABB) and diploid wild goat grass (Aegilops tauschii, D'D'). Over three decades, the International Maize and Wheat Improvement Center (CIMMYT) has developed and utilized SH wheat to bridge gene transfer from Ae. tauschii and durum wheat to hexaploid bread wheat. This is a unique example of success utilizing wild relatives in mainstream breeding at large scale worldwide. Our study aimed to determine the genetic contribution of SH wheat to CIMMYT's global spring bread wheat breeding program. We estimated the theoretical and empirical contribution of D' to synthetic derivative lines using the ancestral pedigree and marker information using over 1,600 advanced lines and their parents. The average marker-estimated D' contribution was 17.5% with difference in genome segments suggesting application of differential selection pressure. The pedigree-based contribution was correlated with marker-based estimates without providing chromosome segment specific variation. Results from international yield trials showed that 20% of the lines were synthetic derived with an average D' contribution of 15.6%. Our results underline the importance of SH wheat in maintaining and enhancing genetic diversity and genetic gain over years and is important for development of a more targeted introgression strategy. The study provides retrospective view into development and utilization of SH in the CIMMYT Global Wheat Program.


Asunto(s)
Aegilops/genética , Pan , Fitomejoramiento , Poliploidía , Semillas/genética , Triticum/genética , Aegilops/crecimiento & desarrollo , Marcadores Genéticos , Genoma de Planta , Triticum/crecimiento & desarrollo
5.
Int J Mol Sci ; 19(12)2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30558200

RESUMEN

Spot blotch (SB) is an important fungal disease of wheat in South Asia and South America. Host resistance is regarded as an economical and environmentally friendly approach of controlling SB, and the inheritance of resistance is mostly quantitative. In order to gain a better understanding on the SB resistance mechanism in CIMMYT germplasm, two bi-parental mapping populations were generated, both comprising 232 F2:7 progenies. Elite CIMMYT breeding lines, BARTAI and WUYA, were used as resistant parents, whereas CIANO T79 was used as susceptible parent in both populations. The two populations were evaluated for field SB resistance at CIMMYT's Agua Fria station for three consecutive years, from the 2012⁻2013 to 2014⁻2015 cropping seasons. Phenological traits like plant height (PH) and days to heading (DH) were also determined. Genotyping was performed using the DArTSeq genotyping-by-sequencing (GBS) platform, and a few D-genome specific SNPs and those for phenological traits were integrated for analysis. The most prominent quantitative trait locus (QTL) in both populations was found on chromosome 5AL at the Vrn-A1 locus, explaining phenotypic variations of 7⁻27%. Minor QTL were found on chromosomes 1B, 3A, 3B, 4B, 4D, 5B and 6D in BARTAI and on chromosomes 1B, 2A, 2D and 4B in WUYA, whereas minor QTL contributed by CIANO T79 were identified on chromosome 1B, 1D, 3A, 4B and 7A. In summary, resistance to SB in the two mapping populations was controlled by multiple minor QTL, with strong influence from Vrn-A1.


Asunto(s)
Mapeo Cromosómico/métodos , Resistencia a la Enfermedad , Sitios de Carácter Cuantitativo , Triticum/genética , Cromosomas de las Plantas/genética , Genotipo , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Semillas/genética , Triticum/anatomía & histología , Triticum/crecimiento & desarrollo
6.
PLoS One ; 13(2): e0193346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29489873

RESUMEN

Germplasm banks are growing in their importance, number of accessions and amount of characterization data, with a large emphasis on molecular genetic markers. In this work, we offer an integrated view of accessions and marker data in an information theory framework. The basis of this development is the mutual information between accessions and allele frequencies for molecular marker loci, which can be decomposed in allele specificities, as well as in rarity and divergence of accessions. In this way, formulas are provided to calculate the specificity of the different marker alleles with reference to their distribution across accessions, accession rarity, defined as the weighted average of the specificity of its alleles, and divergence, defined by the Kullback-Leibler formula. Albeit being different measures, it is demonstrated that average rarity and divergence are equal for any collection. These parameters can contribute to the knowledge of the structure of a germplasm collection and to make decisions about the preservation of rare variants. The concepts herein developed served as the basis for a strategy for core subset selection called HCore, implemented in a publicly available R script. As a proof of concept, the mathematical view and tools developed in this research were applied to a large collection of Mexican wheat accessions, widely characterized by SNP markers. The most specific alleles were found to be private of a single accession, and the distribution of this parameter had its highest frequencies at low levels of specificity. Accession rarity and divergence had largely symmetrical distributions, and had a positive, albeit non-strictly linear relationship. Comparison of the HCore approach for core subset selection, with three state-of-the-art methods, showed it to be superior for average divergence and rarity, mean genetic distance and diversity. The proposed approach can be used for knowledge extraction and decision making in germplasm collections of diploid, inbred or outbred species.


Asunto(s)
Alelos , Gestión de la Información , Almacenamiento y Recuperación de la Información , Banco de Semillas , Marcadores Genéticos/genética , Polimorfismo Genético , Triticum/genética
8.
Sci Rep ; 6: 23092, 2016 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-26976656

RESUMEN

Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.


Asunto(s)
Cromosomas de las Plantas/genética , Variación Genética , Genoma de Planta/genética , Triticum/genética , Algoritmos , Alelos , Flujo Génico , Frecuencia de los Genes , Genotipo , Geografía , México , Modelos Genéticos , Fenotipo , Filogenia , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Poliploidía , Análisis de Componente Principal , Especificidad de la Especie , Triticum/clasificación
9.
PLoS One ; 10(7): e0132112, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26176697

RESUMEN

Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is an important strategy for sustaining crop genetic improvement. The molecular diversity of 1,423 spring bread wheat accessions representing major global production environments was investigated using high quality genotyping-by-sequencing (GBS) loci, and gene-based markers for various adaptive and quality traits. Mean diversity index (DI) estimates revealed synthetic hexaploids to be genetically more diverse (DI= 0.284) than elites (DI = 0.267) and landraces (DI = 0.245). GBS markers discovered thousands of new SNP variations in the landraces which were well known to be adapted to drought (1273 novel GBS SNPs) and heat (4473 novel GBS SNPs) stress environments. This may open new avenues for pre-breeding by enriching the elite germplasm with novel alleles for drought and heat tolerance. Furthermore, new allelic variation for vernalization and glutenin genes was also identified from 47 landraces originating from Iraq, Iran, India, Afghanistan, Pakistan, Uzbekistan and Turkmenistan. The information generated in the study has been utilized to select 200 diverse gene bank accessions to harness their potential in pre-breeding and for allele mining of candidate genes for drought and heat stress tolerance, thus channeling novel variation into breeding pipelines. This research is part of CIMMYT's ongoing 'Seeds of Discovery' project visioning towards the development of high yielding wheat varieties that address future challenges from climate change.


Asunto(s)
Agricultura/métodos , Bases de Datos Genéticas , Genes de Plantas , Variación Genética , Triticum/genética , Alelos , ADN de Plantas/análisis , Genotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...