Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853847

RESUMEN

Connectivity of somatosensory cortex (S1) and cerebellum with the motor cortex (M1) is critical for balance control. While both S1-M1 and cerebellar-M1 connections are affected with aging, the implications of altered connectivity for balance control are not known. We investigated the relationship between S1-M1 and cerebellar-M1 connectivity and standing balance in middle-aged and older adults. Our secondary objective was to investigate how cognition affected the relationship between connectivity and balance. Our results show that greater S1-M1 and cerebellar-M1 connectivity was related to greater postural sway during standing. This may be indicative of an increase in functional recruitment of additional brain networks to maintain upright balance despite differences in network connectivity. Also, cognition moderated the relationship between S1-M1 connectivity and balance, such that those with lower cognition had a stronger relationship between connectivity and balance performance. It may be that individuals with poor cognition need increased recruitment of brain regions (compensation for cognitive declines) and in turn, higher wiring costs, which would be associated with increased functional connectivity.

3.
Gait Posture ; 106: 47-52, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37659222

RESUMEN

BACKGROUND: Sensory deficits in individuals with cerebral palsy (CP) play a critical role in balance control. However, there is a lack of effective interventions that address sensory facilitation to improve walking balance. Stochastic Resonance (SR) stimulation involves delivering sub threshold noise to improve balance in patients with sensory deficits by enhancing the detection of sensory input. RESEARCH QUESTION: To investigate the immediate effects of SR on walking balance in individuals with and without CP. METHODS: Thirty-four participants (17 CP, 17 age-and sex-matched typically developing controls or TD) between 8 and 24 years of age were recruited. SR stimulation was applied to the muscles and ligaments of ankle and hip joint. An optimal SR intensity during walking was determined for each subject. Participants walked on a self-paced treadmill for three trials of two minutes each using a random order of SR stimulation (SR) and no stimulation (noSR) control conditions. Our primary outcome measure was minimum lateral margin of stability (MOS). Secondary outcome measures include anterior MOS before heelstrike and spatiotemporal gait parameters. We performed two-way mixed ANOVAs with group (CP, TD) as between-subject and condition (noSR, SR) as within subject factors. RESULTS: Compared to walking without SR, there was a small but significant increase in the lateral and anterior MOS with SR stimulation, implying that a larger impulse was needed to become unstable, in turn implying higher stability. Step width and step ength decreased with SR for the CP group with SR stimulation. There were no significant effects for other spatiotemporal variables. SIGNIFICANCE: Sub threshold electrical noise can slightly improve walking balance control in individuals with CP. SR stimulation, through enhanced proprioception, may have improved the CP group's awareness of body motion during walking, thus leading them to adopt a more conservative stability strategy to prevent a potential fall.


Asunto(s)
Parálisis Cerebral , Adolescente , Niño , Humanos , Adulto Joven , Parálisis Cerebral/complicaciones , Marcha , Equilibrio Postural/fisiología , Vibración , Caminata/fisiología , Masculino , Femenino
5.
Front Hum Neurosci ; 16: 977032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158616

RESUMEN

Individuals with cerebral palsy (CP) have deficits in processing of somatosensory and proprioceptive information. To compensate for these deficits, they tend to rely on vision over proprioception in single plane upper and lower limb movements and in standing. It is not known whether this also applies to walking, an activity where the threat to balance is higher. Through this study, we used visual perturbations to understand how individuals with and without CP integrate visual input for walking balance control. Additionally, we probed the balance mechanisms driving the responses to the visual perturbations. More specifically, we investigated differences in the use of ankle roll response i.e., the use of ankle inversion, and the foot placement response, i.e., stepping in the direction of perceived fall. Thirty-four participants (17 CP, 17 age-and sex-matched typically developing controls or TD) were recruited. Participants walked on a self-paced treadmill in a virtual reality environment. Intermittently, the virtual scene was rotated in the frontal plane to induce the sensation of a sideways fall. Our results showed that compared to their TD peers, the overall body sway in response to the visual perturbations was magnified and delayed in CP group, implying that they were more affected by changes in visual cues and relied more so on visual information for walking balance control. Also, the CP group showed a lack of ankle response, through a significantly reduced ankle inversion on the affected side compared to the TD group. The CP group showed a higher foot placement response compared to the TD group immediately following the visual perturbations. Thus, individuals with CP showed a dominant proximal foot placement strategy and diminished ankle roll response, suggestive of a reliance on proximal over distal control of walking balance in individuals with CP.

6.
J Meas Phys Behav ; 5(2): 111-119, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37538346

RESUMEN

Introduction: Instrumented gait mat systems have been regarded as one of the gold standard methods for measuring spatiotemporal gait parameters. However, their portable walkways confine walking to a restricted area and limit the number of gait cycles collected. Wearable inertial sensors are a potential alternative that allow more natural walking behavior and have fewer space restrictions. The objective of this pilot study was to establish the concurrent validity of body-worn sensors against the portable walkway system in older children. Methods: Twenty-one participants (10 males) 7-17 years old performed 2-min walk tests at a self-selected and fast pace in a 25-m-long hallway, while wearing three inertial sensors. Data collection were synchronized between devices and the portions of the walk when subjects passed on the walkway were used to compare gait speed, stride length, gait cycle duration, cadence, and double support time. Regression models and Bland-Altman analysis were completed to determine agreement between systems for the selected gait parameters. Results: Gait speed, cadence, gait cycle duration, and stride length as measured by inertial sensors demonstrated strong agreement overall. Double support time was found to have lower validity due to a combined bias of age, height, weight, and walking pace. Conclusion: These results support the validity of wearable inertial sensors in measuring gait speed, cadence, gait cycle duration, and stride length in children 7 years old and above during a 2-min walking test. Future studies are warranted with a broader age range to thoroughly represent the pediatric population.

7.
Rehabil Res Pract ; 2021: 2540324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34725572

RESUMEN

INTRODUCTION: Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder that leads to progressive weakness of bulbar and extremity muscles. Dynamic balance during functional tasks has not been reported in people with SBMA. OBJECTIVES: (1) To evaluate the ability to safely complete a forward lunge (FL), step quick turn (SQT), and step up and over (SUO), (2) to determine the presence and severity of dynamic balance impairments by comparing performance to normative data, and (3) to investigate the relationship between lower extremity strength and ability to complete each task. DESIGN: Cross-sectional analysis. Participants. Fifty-three people with SBMA were included in a cross-sectional analysis. Normative datasets provided by the NeuroCom manufacturer and isometric strength literature facilitated patient comparisons. Outcome Measures. Force plate-based dynamic balance measures included FL (distance, impact index, contact time, and force impulse), SQT (turn time and turn sway), and SUO (lift up index, movement time, and impact index). Maximal isometric contractions of knee extensors, ankle dorsiflexors, ankle plantar flexors, and hip extensors were measured with fixed frame dynamometry. RESULTS: The most difficult test, per completion rate, was SUO (52%), followed by FL (57%) and SQT (65%). t-tests revealed significant abnormalities in eight of nine balance variables (p < 0.05) accompanied by large Cohen's D effect sizes ≥ 0.8. Receiver operating characteristics analysis showed knee extensor (SUO 95% CI =0.78-1.00, SQT 95% CI =0.64-0.92) and ankle plantar flexor strength (SUO 95%CI = 0.75-0.99, SQT 95%CI = 0.64 - 0.92) significantly discriminated the ability to perform SUO and SQT tests with acceptable to excellent areas under the curve. CONCLUSIONS: Considerable dynamic balance abnormalities were observed. Lower extremity strength helps explain low test completion rates. Patients modified task movement patterns, enabling safe task performance. Study results can help direct patient care and future protocol design for people with SBMA.

8.
Sensors (Basel) ; 21(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34833666

RESUMEN

Recumbent stationary cycling is a potential exercise modality for individuals with cerebral palsy (CP) that lack the postural control needed for upright exercises. Functional electrical stimulation (FES) of lower extremity muscles can help such individuals reach the cycling intensities that are required for aerobic benefits. The aim of this study was to examine the effect of cycling with and without FES assistance to that of a no-intervention control group on the cardiorespiratory fitness of children with CP. Thirty-nine participants were randomized to a FES group that underwent an 8-week FES-assisted cycling program, the volitional group (VOL), who cycled without FES, or a no-intervention control group (CON) (15 FES, 11 VOL, 13 CON). Cadence, peak VO2, and net rise in heart rate were assessed at baseline, end of training, and washout (8-weeks after cessation of training). Latent growth curve modeling was used for analysis. The FES group showed significantly higher cycling cadences than the VOL and CON groups at POST and WO. There were no differences in improvements in the peak VO2 and peak net HR between groups. FES-assisted cycling may help children with CP attain higher cycling cadences and to retain these gains after training cessation. Higher training intensities may be necessary to obtain improvements in peak VO2 and heart rate.


Asunto(s)
Parálisis Cerebral , Terapia por Estimulación Eléctrica , Traumatismos de la Médula Espinal , Niño , Estimulación Eléctrica , Ejercicio Físico , Terapia por Ejercicio , Humanos
9.
Sensors (Basel) ; 21(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209917

RESUMEN

Functional electrical stimulation (FES) walking interventions have demonstrated improvements to gait parameters; however, studies were often confined to stimulation of one or two muscle groups. Increased options such as number of muscle groups targeted, timing of stimulation delivery, and level of stimulation are needed to address subject-specific gait deviations. We aimed to demonstrate the feasibility of using a FES system with increased stimulation options during walking in children with cerebral palsy (CP). Three physical therapists designed individualized stimulation programs for six children with CP to target participant-specific gait deviations. Stimulation settings (pulse duration and current) were tuned to each participant. Participants donned our custom FES system that utilized gait phase detection to control stimulation to lower extremity muscle groups and walked on a treadmill at a self-selected speed. Motion capture data were collected during walking with and without the individualized stimulation program. Eight gait metrics and associated timing were compared between walking conditions. The prescribed participant-specific stimulation programs induced significant change towards typical gait in at least one metric for each participant with one iteration of FES-walking. FES systems with increased stimulation options have the potential to allow the physical therapist to better target the individual's gait deviations than a one size fits all device.


Asunto(s)
Parálisis Cerebral , Terapia por Estimulación Eléctrica , Trastornos Neurológicos de la Marcha , Niño , Estimulación Eléctrica , Marcha , Humanos , Caminata
10.
Front Rehabil Sci ; 2: 690046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36188813

RESUMEN

Stationary cycling is a practical exercise modality in children with cerebral palsy (CP) that lack the strength for upright exercises. However, there is a lack of robust, sensitive metrics that can quantitatively assess the motor control during cycling. The purpose of this brief report was to characterize the differences in motor control of cycling in children with CP and with typical development by developing novel metrics to quantify cycling smoothness and rhythm. Thirty one children with spastic diplegic CP and 10 children with typical development cycled on a stationary cycle. Cycling smoothness was measured by cross-correlating the crank angle with an ideal cycling pattern generated from participant-specific cadence and cycling duration. Cycling rhythmicity was assessed by evaluating the revolution-to-revolution variability in the time required to complete a revolution. Statistically significant differences (p < 0.001) using the Wilcoxon Rank Sum test were found between the two groups for both the metrics. Additionally, decision tree analysis revealed thresholds of smoothness <0.01 and rhythm <0.089-0.115 s for discriminating a less smooth, irregular cycling pattern characteristic of CP from typical cycling. In summary, the objective measures developed in this study indicate significantly less smoothness and rhythm of cycling in children with CP compared to children with typical development, suggestive of altered coordination and poor motor control. Such quantitative assessments of cycling motion in children with CP provide insights into neuromotor deficits that prevent them from cycling at intensities required for aerobic benefits and for participating in cycling related physical activities with their peers.

11.
J Meas Phys Behav ; 3(3): 228-233, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37476708

RESUMEN

Aims: Clinical evaluation of balance has relied on forceplate systems as the gold standard for postural sway measures. Recently, systems based on wireless inertial sensors have been explored, mostly in the adult population, as an alternative given their practicality and lower cost. Our goal was to validate body-worn sensors against forceplate balance measures in typically developing children during tests of quiet stance. Methods: 18 participants (8 males) 7 to 17 years old performed a quiet stance test standing on a forceplate while wearing 3 inertial sensors. Three 30-second trials were performed under 4 conditions: firm surface with eyes open and closed, and foam surface with eyes open and closed. Sway area, path length, and sway velocity were calculated. Results: We found 20 significant and 8 non-significant correlations. Variables found to be significant were represented across all conditions, except for the foam eyes closed condition. Conclusions: These results support the validity of wearable sensors in measuring postural sway in children. Inertial sensors may represent a viable alternative to the gold standard forceplate to test static balance in children.

12.
J Child Neurol ; 33(1): 114-124, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29246094

RESUMEN

This is the first study to objectively measure gait, balance, and upper limb coordination in a group of patients with NPC1 and compare the results to age and gender matched controls. This is also the first study to report effect sizes in these measures. Spatiotemporal gait analysis, static and dynamic posturography, and upper limb reaching motion analysis were performed. The findings showed that the NPC1 subjects had statistically significant deficits on 12 out of the 16 parameters investigated compared to controls, and large effect sizes for all but 1 parameter. When ranking the variables in terms of the effect sizes, the top 5 included at least 1 parameter from each of the 3 motor domains investigated. These results can provide insight to clinical researchers on the selection of outcome measures for longitudinal and interventional studies.


Asunto(s)
Marcha , Destreza Motora , Enfermedad de Niemann-Pick Tipo C/fisiopatología , Equilibrio Postural , Adolescente , Fenómenos Biomecánicos , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Índice de Severidad de la Enfermedad , Extremidad Superior/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...