Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37624655

The growing concern of consumers with the welfare of production animals searches welfare in a production system extremely important; thus, the study of animal temperament is necessary to select less excitable temperament animals resulting in healthy development and fewer accidents. The objective of this study was to estimate genetic parameters for traits related to animal temperament and growth traits of Nellore cattle. In addition to exploring the genetic pattern of these traits through cluster and principal component analysis (PCA), to reveal possible groups of individuals that express less excitable temperament and greater growth. A total of 2,332 measurements from 1,245 male and female Nellore cattle born between 2008 and 2016 were utilized in the study. The (co)variance components were estimated by Bayesian inference using a two-trait animal model. The heritability for temperament score (TS), flight speed (FS), body condition score (BCS), live weight (LW), and hip height (HH) were 0.08, 0.12, 0.06, 0.13, and 0.48, respectively. The genetic correlation between the temperament indicator traits was strong and positive (0.78 ±â€…0.24). The TS and FS showed a favorable or null genetic correlation with LW, BCS, and HH. The third cluster included animals with low EBV for TS and FS and with high EBV for BCS, LW, and HH. In the PCA, the PC1 was what best evidenced the aim of this study; thus, our findings suggest that we could explore select animals based on cluster 3 and PC1 in breeding programs to select Nellore cattle with less excitable temperament and greater growth.


In our manuscript, we estimated the genetic parameters for indicator traits for animal temperament and growth traits in Nellore cattle, and we use the estimated breeding value of the evaluated animals in cluster analyses and principal component analyses to assess whether there are groups within the population that can be used as candidates for selection.


Cobalt , Health Status , Female , Male , Animals , Cattle/genetics , Pregnancy , Bayes Theorem , Parturition , Phenotype
2.
Animals (Basel) ; 13(14)2023 Jul 15.
Article En | MEDLINE | ID: mdl-37508098

The prenatal environment is recognized as crucial for the postnatal performance in cattle. In tropical regions, pregnant beef cows commonly experience nutritional restriction during the second half of the gestation period. Thus, the present study was designed to analyze the genotype by prenatal environment interaction (G × Epn) and to identify genomic regions associated with the level and response in growth and reproduction-related traits of beef cattle to changes in the prenatal environment. A reaction norm model was applied to data from two Nelore herds using the solutions of contemporary groups for birth weight as a descriptor variable of the gestational environment quality. A better gestational environment favored weights until weaning, scrotal circumference at yearling, and days to first calving of the offspring. The G × Epn was strong enough to result in heterogeneity of variance components and genetic parameters in addition to reranking of estimated breeding values and SNPs effects. Several genomic regions associated with the level of performance and specific responses of the animals to variations in the gestational environment were revealed, which harbor QTLs and can be exploited for selection purposes. Therefore, genetic evaluation models considering G × Epn and special management and nutrition care for pregnant cows are recommended.

3.
PLoS One ; 15(7): e0236647, 2020.
Article En | MEDLINE | ID: mdl-32730350

The Great-billed Seed-finch (Sporophila maximiliani) is an endangered South American bird that has suffered from trafficking and the destruction of its natural habitat. In contrast, there are over 180,000 Great-billed Seed-finches legally raised in captivity in Brazil. The interest as a pet for Great-billed Seed-finches is due to their exceptional ability to sing. In the present research, the unknown genetic structure of the Great-billed Seed-finch captive population was investigated by quantitative analysis of 6,226 pedigree records. Additionally, 7,671 phenotypic records were available to estimate genetic parameters such as heritability and evolvability of a song-related trait of these birds for competitions. The captive Great-billed Seed-Finch population faces many of the problems commonly encountered in domestic animal populations such as a high level of inbreeding (average of 8.26%, 70.47% of birds were inbred), pedigree bottlenecks, unbalanced contribution of breeding animals and structuring (equivalent number of subpopulations of 2.91). Despite this, most genetic diversity remains preserved within aviaries. The high generation interval (5.74 years) found for this population should help to prevent a rapid increase in inbreeding and genetic drift. These results should serve as strong motivation and support for urgent actions to manage the genetic diversity of captive Great-billed Seed-Finches. From the viewpoint of genetic improvement for singing time in tournaments (STT), this trait presents sufficient variability to allow response to artificial selection given the heritability of 18.7% and evolvability of 2,447%. In contrast, inbreeding and high generation interval appear to be the most considerable barriers that may limit the genetic gain for STT. Widespread adoption of techniques such as optimal genetic contribution selection and implementation of routine genetic diversity monitoring via pedigree analysis and molecular tools can be crucial both in terms of breeding and conservation of genetic diversity of captive Great-billed Seed-Finches.


Genetic Variation , Passeriformes/genetics , Animals , Conservation of Natural Resources , Endangered Species , Female , Inbreeding , Male , Pedigree , Phenotype , Vocalization, Animal
4.
J Anim Breed Genet ; 137(5): 486-494, 2020 Sep.
Article En | MEDLINE | ID: mdl-31646684

The present study evaluated the heat stress response pattern of dual-purpose Guzerá cattle for test-day (TD) milk yield records of first lactation and estimated genetic parameters and trends related to heat stress. A total of 31,435 TD records from 4,486 first lactations of Guzerá cows, collected between 1986 and 2012, were analysed. Two random regression models considered days in milk (DIM) and/or temperature × humidity-dependent (THI) covariate. Impacts of -0.037, -0.019 and -0.006 kg/day/THI for initial and intermediate stages of lactation were observed when considering the mean maximum daily temperature and humidity to calculate THI. Heritability estimates ranged from 0.16 to 0.35 throughout lactation and THI values, suggesting the possibility to expect gains from selection for such trait. The variable trajectory of breeding values for dual-purpose Guzerá sires in response to changes in THI values confirms that the genotype × environment interaction due to heat stress can have some effect on TD milk yield. Despite the high dairy performance of Guzerá cattle under heat stress, estimated genetic trends showed a progressive reduction in heat tolerance. Therefore, new strategies should be adopted to prevent negative impacts of heat stress over milk production in Guzerá animals in future.


Breeding , Heat Stress Disorders/genetics , Heat-Shock Response/genetics , Lactation/genetics , Animals , Cattle , Female , Genetic Variation/genetics , Genotype , Heat Stress Disorders/pathology , Heat-Shock Response/physiology , Hot Temperature/adverse effects
5.
J Appl Genet ; 57(1): 119-27, 2016 Feb.
Article En | MEDLINE | ID: mdl-26155774

The present study had the following objectives: to compare random regression models (RRM) considering the time-dependent (days in milk, DIM) and/or temperature × humidity-dependent (THI) covariate for genetic evaluation; to identify the effect of genotype by environment interaction (G×E) due to heat stress on milk yield; and to quantify the loss of milk yield due to heat stress across lactation of cows under tropical conditions. A total of 937,771 test-day records from 3603 first lactations of Brazilian Holstein cows obtained between 2007 and 2013 were analyzed. An important reduction in milk yield due to heat stress was observed for THI values above 66 (-0.23 kg/day/THI). Three phases of milk yield loss were identified during lactation, the most damaging one at the end of lactation (-0.27 kg/day/THI). Using the most complex RRM, the additive genetic variance could be altered simultaneously as a function of both DIM and THI values. This model could be recommended for the genetic evaluation taking into account the effect of G×E. The response to selection in the comfort zone (THI ≤ 66) is expected to be higher than that obtained in the heat stress zone (THI > 66) of the animals. The genetic correlations between milk yield in the comfort and heat stress zones were less than unity at opposite extremes of the environmental gradient. Thus, the best animals for milk yield in the comfort zone are not necessarily the best in the zone of heat stress and, therefore, G×E due to heat stress should not be neglected in the genetic evaluation.


Cattle/genetics , Gene-Environment Interaction , Hot Temperature , Milk , Stress, Physiological/genetics , Animals , Brazil , Dairying , Female , Humidity , Lactation , Male , Models, Genetic , Regression Analysis , Tropical Climate
...