RESUMEN
OBJECTIVE: To evaluate newborn screening (NBS) for very long-chain acyl-CoA dehydrogenase deficiency (VLCADD), we further characterized newborns with elevation of one or all C14-carnitine derivatives on NBS from a total of 90 338 newborns. STUDY DESIGN: Palmitoyl-CoA oxidation was performed in lymphocytes to define very long-chain acyl-CoA dehydrogenase function. Molecular analysis followed in children with residual activities<50%. The acylcarnitine pattern on days 2 to 3 of life was evaluated thoroughly to define possible discrimination markers. RESULTS: Forty newborns with increased C14:1-carnitine were identified (1:2500). In 2 newborns, VLCADD was confirmed with enzyme and molecular analyses (prevalence, 1:50,000). One of these newborns had normal results on a second screening. Also, the combination of absolute acylcarnitine values and acylcarnitine ratios did not allow correct identification of the newborn as a patient with VLCADD. CONCLUSIONS: Reliable diagnosis is not feasible with acylcarnitine analysis alone. Enzyme analysis in lymphocytes is a reliable and rapid method for correctly assessing all newborns with VLCADD and should be carried out in all newborns identified during the first screening, regardless of the results of a later acylcarnitine profile.
Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Pruebas Enzimáticas Clínicas/métodos , Errores Innatos del Metabolismo/diagnóstico , Tamizaje Neonatal , Espectrometría de Masas en Tándem/instrumentación , Carnitina/análogos & derivados , Carnitina/análisis , Humanos , Recién NacidoRESUMEN
We determined cardiolipin concentrations in cultured skin fibroblasts of 5 patients with X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060) and in two groups of control patients. High-performance liquid chromatography-electrospray mass spectrometry was used to quantify total cardiolipin and subclasses of cardiolipin molecular species in cultured skin fibroblasts. Total cardiolipin and cardiolipin subclasses were decreased in patients with Barth syndrome as compared with normal control patients and disease control patients. Patients with Barth syndrome have a specific decrease of various cardiolipin molecular species, foremost tetralineoyl-cardiolipin. Therefore the analysis of cardiolipin in fibroblasts offers a specific biochemical approach to detect this disorder.