Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Meas Sci Au ; 4(2): 188-200, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38645575

RESUMEN

Electrochemical paper-based analytical devices represent an important platform for portable, low-cost, affordable, and decentralized diagnostics. For this kind of application, chemical functionalization plays a pivotal role to ensure high clinical performance by tuning surface properties and the area of electrodes. However, controlling different surface properties of electrodes by using a single functionalization route is still challenging. In this work, we attempted to tune the wettability, chemical composition, and electroactive area of carbon-paper-based devices by thermally treating polydopamine (PDA) at different temperatures. PDA films were deposited onto pyrolyzed paper (PP) electrodes and thermally treated in the range of 300-1000 °C. After deposition of PDA, the surface is rich in nitrogen and oxygen, it is superhydrophilic, and it has a high electroactive area. As the temperature increases, the surface becomes hydrophobic, and the electroactive area decreases. The surface modifications were followed by Raman, X-ray photoelectron microscopy (XPS), laser scanning confocal microscopy (LSCM), contact angle, scanning electron microscopy (SEM-EDS), electrical measurements, transmission electron microscopy (TEM), and electrochemical experiments. In addition, the chemical composition of nitrogen species can be tuned on the surface. As a proof of concept, we employed PDA-treated surfaces to anchor [AuCl4]- ions. After electrochemical reduction, we observed that it is possible to control the size of the nanoparticles on the surface. Our route opens a new avenue to add versatility to electrochemical interfaces in the field of paper-based electrochemical biosensors.

2.
Adv Healthc Mater ; 13(11): e2303509, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38245830

RESUMEN

Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Técnicas Electroquímicas , SARS-CoV-2 , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/sangre , Electrodos , Anticuerpos Antivirales/sangre , Oro/química , Inmunoensayo/métodos , Inmunoensayo/instrumentación
3.
Nanoscale ; 15(13): 6201-6214, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36917005

RESUMEN

While pyrolyzed paper (PP) is a green and abundant material that can provide functionalized electrodes with wide detection windows for a plethora of targets, it poses long-standing challenges against sensing assays such as poor electrical conductivity, with resistivities generally higher than 200.0 mΩ cm (e.g., gold and silver show resistivities 1000-fold lower, ∼0.2 mΩ cm). In this regard, the fundamental hypothesis that drives this work is whether a scalable, cost-effective, and eco-friendly strategy is capable of significantly reducing the resistivity of PP electrodes toward the development of sensitive electrochemical sensors, whether faradaic or capacitive. We address this hypothesis by simply annealing PP under an isopropanol atmosphere for 1 h, reaching resistivities as low as 7 mΩ cm. Specifically, the annealing of PP at 800 or 1000 °C under isopropanol vapor leads to the formation of a highly graphitic nanolayer (∼15 nm) on the PP surface, boosting conductivity as the delocalization of π electrons stemming from carbon sp2 is favored. The reduction of carbonyl groups and the deposition of dehydrated isopropanol during the annealing process are hypothesized herein as the dominant PP graphitization mechanisms. Electrochemical analyses demonstrated the capability of the annealed PP to increase the charge-transfer kinetics, with the optimum heterogeneous standard rate constant being roughly 3.6 × 10-3 cm s-1. This value is larger than the constants reported for other carbon electrodes and indium tin oxide. Furthermore, freestanding fingers of the annealed PP were prototyped using a knife plotter to fabricate impedimetric on-leaf electrodes. These wearable sensors ensured the real-time and in situ monitoring of the loss of water content from soy leaves, outperforming non-annealed electrodes in terms of reproducibility and sensitivity. Such an application is of pivotal importance for precision agriculture and development of agricultural inputs. This work addresses the foundations for the achievement of conductive PP in a scalable, low-cost, simple, and eco-friendly way, i.e. without producing any liquid chemical waste, providing new opportunities to translate PP-based sensitive electrochemical devices into practical use.

4.
Anal Bioanal Chem ; 415(18): 3799-3816, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36645457

RESUMEN

Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Técnicas Electroquímicas , Nanoestructuras/química , Polímeros/química , Indoles
5.
ACS Nano ; 16(9): 14239-14253, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35969505

RESUMEN

Limitations of the recognition elements in terms of synthesis, cost, availability, and stability have impaired the translation of biosensors into practical use. Inspired by nature to mimic the molecular recognition of the anti-SARS-CoV-2 S protein antibody (AbS) by the S protein binding site, we synthesized the peptide sequence of Asn-Asn-Ala-Thr-Asn-COOH (abbreviated as PEP2003) to create COVID-19 screening label-free (LF) biosensors based on a carbon electrode, gold nanoparticles (AuNPs), and electrochemical impedance spectroscopy. The PEP2003 is easily obtained by chemical synthesis, and it can be adsorbed on electrodes while maintaining its ability for AbS recognition, further leading to a sensitivity 3.4-fold higher than the full-length S protein, which is in agreement with the increase in the target-to-receptor size ratio. Peptide-loaded LF devices based on noncovalent immobilization were developed by affording fast and simple analyses, along with a modular functionalization. From studies by molecular docking, the peptide-AbS binding was found to be driven by hydrogen bonds and hydrophobic interactions. Moreover, the peptide is not amenable to denaturation, thus addressing the trade-off between scalability, cost, and robustness. The biosensor preserves 95.1% of the initial signal for 20 days when stored dry at 4 °C. With the aid of two simple equations fitted by machine learning (ML), the method was able to make the COVID-19 screening of 39 biological samples into healthy and infected groups with 100.0% accuracy. By taking advantage of peptide-related merits combined with advances in surface chemistry and ML-aided accuracy, this platform is promising to bring COVID-19 biosensors into mainstream use toward straightforward, fast, and accurate analyses at the point of care, with social and economic impacts being achieved.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Prueba de COVID-19 , Carbono/química , Técnicas Electroquímicas , Electrodos , Oro/química , Humanos , Nanopartículas del Metal/química , Simulación del Acoplamiento Molecular , Péptidos/química
6.
Nanoscale ; 14(18): 6811-6821, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35388391

RESUMEN

Molybdenum disulfide (MoS2) is a very promising layered material for electrical, optical, and electrochemical applications because of its unique and outstanding properties. To unlock its full potential, among different preparation routes, electrochemistry has gain interest due to its simple, fast, scalable and simple instrumentation. However, obtaining large-area monolayer MoS2 that will enable the fabrication of novel electronic and electrochemical devices is still challenging. In this work, we reported a simple and fast electrochemical thinning process that results in ultra-large MoS2 down to monolayer on Au surfaces. The high affinity of MoS2 by Au surfaces enables the removal of bulk layers while preserving the first layer attached to the electrode. With a proper choice of the applied potential, more than 90% of the bulk regions can be removed from large-area MoS2 crystals, as confirmed by atomic force microscopy, photoluminescence, and Raman spectroscopy. We further address a set of contributions that are helpful to elucidate the features of MoS2, namely, the hyphenation of electrochemistry and optical microscopy for real-time observation of the thinning process that was revealed to occur from the edges to the center of the flake, an image treatment to estimate the thinning area and thinning rate, and the preparation of free-standing MoS2 layers by electrochemically thinning bulk flakes on microhole-structured Ni/Au meshes.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35311272

RESUMEN

Impedimetric wearable sensors are a promising strategy for determining the loss of water content (LWC) from leaves because they can afford on-site and nondestructive quantification of cellular water from a single measurement. Because the water content is a key marker of leaf health, monitoring of the LWC can lend key insights into daily practice in precision agriculture, toxicity studies, and the development of agricultural inputs. Ongoing challenges with this monitoring are the on-leaf adhesion, compatibility, scalability, and reproducibility of the electrodes, especially when subjected to long-term measurements. This paper introduces a set of sensing material, technological, and data processing solutions that overwhelm such obstacles. Mass-production-suitable electrodes consisting of stand-alone Ni films obtained by well-established microfabrication methods or ecofriendly pyrolyzed paper enabled reproducible determination of the LWC from soy leaves with optimized sensibilities of 27.0 (Ni) and 17.5 kΩ %-1 (paper). The freestanding design of the Ni electrodes was further key to delivering high on-leaf adhesion and long-term compatibility. Their impedances remained unchanged under the action of wind at velocities of up to 2.00 m s-1, whereas X-ray nanoprobe fluorescence assays allowed us to confirm the Ni sensor compatibility by the monitoring of the soy leaf health in an electrode-exposed area. Both electrodes operated through direct transfer of the conductive materials on hairy soy leaves using an ordinary adhesive tape. We used a hand-held and low-power potentiostat with wireless connection to a smartphone to determine the LWC over 24 h. Impressively, a machine-learning model was able to convert the sensing responses into a simple mathematical equation that gauged the impairments on the water content at two temperatures (30 and 20 °C) with reduced root-mean-square errors (0.1% up to 0.3%). These data suggest broad applicability of the platform by enabling direct determination of the LWC from leaves even at variable temperatures. Overall, our findings may help to pave the way for translating "sense-act" technologies into practice toward the on-site and remote investigation of plant drought stress. These platforms can provide key information for aiding efficient data-driven management and guiding decision-making steps.

8.
ACS Appl Mater Interfaces ; 14(2): 2522-2533, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34990106

RESUMEN

Electrochemical detection in complex biofluids is a long-standing challenge as electrode biofouling hampers its sensing performance and commercial translation. To overcome this drawback, pyrolyzed paper as porous electrode coupled with the drop casting of an off-the-shelf polysorbate, that is, Tween 20 (T20), is described here by taking advantage of the in situ formation of a hydrophilic nanocoating (2 nm layer of T20). The latter prevents biofouling while providing the capillarity of samples through paper pores, leveraging redox reactions across both only partially fouled and fresh electrodic surfaces with increasing detection areas. The nanometric thickness of this blocking layer is also essential by not significantly impairing the electron-transfer kinetics. These phenomena behave synergistically to enhance the sensibility that further increases over long-term exposures (4 h) in biological fluids. While the state-of-the-art antibiofouling strategies compromise the sensibility, this approach leads to peak currents that are up to 12.5-fold higher than the original currents after 1 h exposure to unprocessed human plasma. Label-free impedimetric immunoassays through modular bioconjugation by directly anchoring spike protein on gold nanoparticles are also allowed, as demonstrated for the COVID-19 screening of patient sera. The scalability and simplicity of the platform combined with its unique ability to operate in biofluids with enhanced sensibility provide the generation of promising biosensing technologies toward real-world applications in point-of-care diagnostics, mass testing, and in-home monitoring of chronic diseases.


Asunto(s)
Anticuerpos Antivirales/inmunología , Técnicas Biosensibles/métodos , Prueba Serológica para COVID-19/métodos , Pruebas Diagnósticas de Rutina/métodos , Proteínas Recombinantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Diagnóstico Precoz , Humanos , Sensibilidad y Especificidad
9.
ACS Sens ; 6(8): 3125-3132, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34399053

RESUMEN

The sensing field has shed light on an urgent necessity for field-deployable, user-friendly, sensitive, and scalable platforms that are able to translate solutions into the real world. Here, we attempt to meet these requests by addressing a simple, low-cost, and fast electrochemical approach to provide sensitive assays that consist of dropping a small volume (0.5 µL) of off-the-shelf alcohols on pyrolyzed paper-based electrodes before adding the sample (150 µL). This method was applied in the detection of phosphate after the formation of the phosphomolybdate complex (250-860 nm in size). Prior drops of isopropanol allow for the fast penetration of the sample through pores of this hydrophobic paper, delivering hindrance-free redox reactions across increasing active areas and ultimately improving the detection performance. The sensitivity (-1.9 10-6 mA cm-2 ppb-1) and limit of detection (1.1 ppb) were improved, respectively, by factors of 33 and 99 over the data achieved without the addition of isopropanol, listing among the lowest values when compared with those results reported in the literature for phosphate (expressed in terms of the concentration of phosphorus). The approach enabled the quantification of this analyte in real samples with accuracies ranging from 87 to 103%. Furthermore, preliminary measurements demonstrated the successful performance of the electrodes with prior addition of other widely used alcohols, that is, methanol and ethanol. These results may extend the applicability of the method. In special, the scalability and eco-friendly character of the electrode fabrication combined with the sensitivity and simplicity of the analyses make the developed platform a promising alternative that may help to pave the way for a new generation of disposable sensors toward the daily monitoring of phosphate in water samples, thus contributing to prevent ecological side effects.


Asunto(s)
Técnicas Electroquímicas , Fosfatos , Acción Capilar , Electrodos , Etanol , Porosidad
10.
Biopolymers ; 112(12): e23472, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34432290

RESUMEN

Since the discovery of polydopamine (PDA), there has been a lot of progress on using this substance to functionalize many different surfaces. However, little attention has been given to prepare functionalized surfaces for the preparation of flexible electrochemical paper-based devices. After fabricating the electrodes on paper substrates, we formed PDA on the surface of the working electrode using a chemical polymerization route. PDA nanofilms on carbon were characterized by contact angle (CA) experiments, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy (topography and electrical measurements) and electrochemical techniques. We observed that PDA introduces chemical functionalities (RNH2 and RC═O) that decrease the CA of the electrode. Moreover, PDA nanofilms did not block the heterogeneous electron transfer. In fact, we observed one of the highest standard heterogeneous rate constants (ks ) for electrochemical paper-based electrodes (2.5 ± 0.1) × 10-3  cm s-1 , which is an essential parameter to obtain larger currents. In addition, our results suggest that carbonyl functionalities are ascribed for the redox activity of the nanofilms. As a proof-of-concept, the electrooxidation of nicotinamide adenine dinucleotide showed remarkable features, such as, lower oxidation potential, electrocatalytic peak currents more than 30 times higher when compared to unmodified paper-based electrodes and electrocatalytic rate constant (kobs ) of (8.2 ± 0.6) × 102  L mol-1  s-1 .


Asunto(s)
Indoles , Polímeros , Técnicas Electroquímicas , Electrodos , Oxidación-Reducción
11.
ACS Appl Mater Interfaces ; 13(30): 35914-35923, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34309352

RESUMEN

The monitoring of toxic inorganic gases and volatile organic compounds has brought the development of field-deployable, sensitive, and scalable sensors into focus. Here, we attempted to meet these requirements by using concurrently microhole-structured meshes as (i) a membrane for the gas diffusion extraction of an analyte from a donor sample and (ii) an electrode for the sensitive electrochemical determination of this target with the receptor electrolyte at rest. We used two types of meshes with complementary benefits, i.e., Ni mesh fabricated by robust, scalable, and well-established methods for manufacturing specific designs and stainless steel wire mesh (SSWM), which is commercially available at a low cost. The diffusion of gas (from a donor) was conducted in headspace mode, thus minimizing issues related to mesh fouling. When compared with the conventional polytetrafluoroethylene (PTFE) membrane, both the meshes (40 µm hole diameter) led to a higher amount of vapor collected into the electrolyte for subsequent detection. This inedited fashion produced a kind of reverse diffusion of the analyte dissolved into the electrolyte (receptor), i.e., from the electrode to bulk, which further enabled highly sensitive analyses. Using Ni mesh coated with Ni(OH)2 nanoparticles, the limit of detection reached for ethanol was 24-fold lower than the data attained by a platform with a PTFE membrane and placement of the electrode into electrolyte bulk. This system was applied in the determination of ethanol in complex samples related to the production of ethanol biofuel. It is noteworthy that a simple equation fitted by machine learning was able to provide accurate assays (accuracies from 97 to 102%) by overcoming matrix effect-related interferences on detection performance. Furthermore, preliminary measurements demonstrated the successful coating of the meshes with gold films as an alternative raw electrode material and the monitoring of HCl utilizing Au-coated SSWMs. These strategies extend the applicability of the platform that may help to develop valuable volatile sensing solutions.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Etanol/análisis , Ácido Clorhídrico/análisis , Membranas Artificiales , Níquel/química , Acero Inoxidable/química , Técnicas Electroquímicas/métodos , Electrodos , Hidróxidos/química , Límite de Detección , Nanopartículas del Metal/química , Compuestos Orgánicos Volátiles/análisis
12.
ACS Appl Bio Mater ; 4(9): 6682-6689, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35006971

RESUMEN

Nanocellulose is a promising material for fabricating green, biocompatible, flexible, and foldable devices. One of the main issues of using nanocellulose as a fundamental component for wearable electronics is the influence of environmental conditions on it. The water adsorption promotes the swelling of nanopaper substrates, which directly affects the devices' electrical properties prepared on/with it. Here, plant-based nanocellulose substrates, and ink composites deposited on them, are chemically modified using hexamethyldisilazane to enhance the system's hydrophobicity. After the treatment, the electrical properties of the devices exhibit stable operation under humidity levels around 95%. Such stability demonstrates that the hexamethyldisilazane modification substantially suppresses the water adsorption on fundamental device structures, namely, substrate plus conducting ink. These results attest to the robustness necessary to use nanocellulose as a key material in wearable devices such as electronic skins and tattoos and contribute to the worldwide efforts to create biodegradable devices engineered in a more deterministic fashion.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrónica , Interacciones Hidrofóbicas e Hidrofílicas , Agua
13.
Anal Chim Acta ; 1119: 1-10, 2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32439048

RESUMEN

This study reports, for the first time, the possibility to manufacture analytical devices on polyester substrates using a cutting printer. The protocol involves the design of a layout in a graphical software, the cut into polyester films and the lamination against one or multiple polyester films coated with a thermosensitive layer. The feasibility of the proposed approach was demonstrated through the fabrication of 96-microwell plates, 3D microfluidic mixing and distance-based microfluidic devices. The printer has enabled cutting microchannels wider than 300 µm on polyester films and a thickness of 250 µm. Urea and glucose assays were performed on microwell plates aiming for their quantification in artificial urine and serum samples. The presented results revealed good agreement with the expected values. The complexation reaction between Fe2+ and o-phenanthroline was selected as model to investigate the feasibility of the 3D mixing device. Absorbance measurements were recorded for the reaction product performed in both on and off-chip modes. Considering the achieved data, the on-chip mixing exhibited similar behavior when compared to off-chip reaction, thus demonstrating to be efficient to perform mixtures due to the turbulence generated inside three-dimensional channels. Lastly, a distance-based device was designed to detect H2O2 based on the displacement of a dye plug promoted by the oxygen generation using a copper-modified paper sheet. The distance-based peroxymeter revealed a linear behavior in the concentration range between 1 and 5% (v/v) and a LOD equal to 0.5% (65.2 mM). Based on the results herein reported, the proposed method represents a simple and alternative protocol to produce microdevices, using affordable and inexpensive raw materials, within 10 min, and at a cost lower than US$ 0.10 per unit.

14.
ACS Appl Mater Interfaces ; 10(41): 35631-35638, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30247018

RESUMEN

The synergic combination of materials and interfaces to create novel functional devices is a crucial approach for various applications, including low-cost paper-based point-of-care systems. In this work, we demonstrate the implementation of surface-modified polypyrrole (PPy) structures, monolithically integrated into a three-dimensional multilayered paper-based microfluidic device, to locally assess humidity changes. The fabrication and integration of the system include the deterministic incorporation of PPy into the paper-based structure by gas-phase polymerization and the modification of the polymer properties to allow local humidity monitoring. The functionalization of PPy changes both the wettability and the chemical composition of the interface, what is of fundamental importance for the sensor's operation. The PPy structure has excellent mechanical stability, enduring at least 600 bending cycles, what is of relevance on flexible electronics. The electrical resistance correlates with the local relative humidity (RH) inside of the sealed microfluidic system, and the sensor response is fully reversible. The integrated system capable of locally monitoring the RH allowed us to verify that inside the microfluidic channel, water molecules can diffuse across the wax barriers-a possibility disregarded so far. Our results attest that RH variations of 5-10% can affect the flow of extended channels (>5 cm) even when they are fully enclosed.

15.
ACS Appl Mater Interfaces ; 9(28): 24365-24372, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28650141

RESUMEN

In this work, we demonstrate the first example of fully printed carbon nanomaterials on paper with unique features, aiming the fabrication of functional electronic and electrochemical devices. Bare and modified inks were prepared by combining carbon black and cellulose acetate to achieve high-performance conductive tracks with low sheet resistance. The carbon black tracks withstand extremely high folding cycles (>20 000 cycles), a new record-high with a response loss of less than 10%. The conductive tracks can also be used as 3D paper-based electrochemical cells with high heterogeneous rate constants, a feature that opens a myriad of electrochemical applications. As a relevant demonstrator, the conductive ink modified with Prussian-blue was electrochemically characterized proving to be very promising toward the detection of hydrogen peroxide at very low potentials. Moreover, carbon black circuits can be fully crumpled with negligible change in their electrical response. Fully printed motion and wearable sensors are additional examples where bioinspired microcracks are created on the conductive track. The wearable devices are capable of efficiently monitoring extremely low bending angles including human motions, fingers, and forearm. Here, to the best of our knowledge, the mechanical, electronic, and electrochemical performance of the proposed devices surpasses the most recent advances in paper-based devices.

16.
ACS Appl Mater Interfaces ; 9(13): 11959-11966, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28296386

RESUMEN

A simple and fast fabrication method to create high-performance pencil-drawn electrochemical sensors is reported for the first time. The sluggish electron transfer observed on bare pencil-drawn surfaces was enhanced using two electrochemical steps: first oxidizing the surface and then reducing it in a subsequent step. The heterogeneous rate constant was found to be 5.1 × 10-3 cm s-1, which is the highest value reported so far for pencil-drawn surfaces. We mapped the origin of such performance by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Our results suggest that the oxidation process leads to chemical and structural transformations on the electrode surface. As a proof-of-concept, we modified the pencil-drawn surface with Meldola's blue to electrocatalytically detect nicotinamide adenine dinucleotide (NADH). The electrochemical device exhibited the highest catalytic constant (1.7 × 105 L mol-1 s-1) and the lowest detection potential for NADH reported so far in paper-based electrodes.

17.
ACS Appl Mater Interfaces ; 8(17): 10661-4, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27065112

RESUMEN

The fabrication of three-dimensional (3D) polypyrrole conductive tracks through the porous structure of paper is demonstrated by the first time. We combined paper microfluidics and gas-phase pyrrole monomers to chemically synthesize polypyrrole-conducting channels embedded in-between the cellulose fibers. By using this method, foldable conductive structures can be created across the whole paper structure, allowing the electrical connection between both sides of the substrate. As a proof of concept, top-channel-top (TCT) and top-channel-bottom (TCB) conductive interconnections as well as all-organic paper-based touch buttons are demonstrated.

18.
Lab Chip ; 15(7): 1651-5, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25686364

RESUMEN

We reported here for the first time that triboelectric charges on PET sheets can be used to seal and control the flow rate in paper-based devices. The proposed method exhibits simplicity and low cost, provides reversible sealing and minimizes the effect of sample evaporation.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Papel , Electricidad Estática , Diseño de Equipo , Ensayo de Materiales , Sistemas de Atención de Punto , Polimetil Metacrilato , Politetrafluoroetileno
19.
Bioanalysis ; 6(1): 89-106, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24341497

RESUMEN

Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/instrumentación , Papel , Bacterias/aislamiento & purificación , Productos Biológicos/análisis , Biomarcadores/análisis , Colorimetría/métodos , Técnicas Electroquímicas , Inocuidad de los Alimentos/métodos , Humanos , Mediciones Luminiscentes , Técnicas Analíticas Microfluídicas/tendencias , Microfluídica/métodos , Microfluídica/tendencias , Plaguicidas/análisis , Procesos Fotoquímicos
20.
Anal Chem ; 85(10): 5233-9, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23581428

RESUMEN

This work presents a simple, low cost method for creating microelectrodes for electrochemical paper-based analytical devices (ePADs). The microelectrodes were constructed by backfilling small holes made in polyester sheets using a CO2 laser etching system. To make electrical connections, the working electrodes were combined with silver screen-printed paper in a sandwich type two-electrode configuration. The devices were characterized using linear sweep voltammetry, and the results are in good agreement with theoretical predictions for electrode size and shape. As a proof-of-concept, cysteine was measured using cobalt phthalocyanine as a redox mediator. The rate constant (k(obs)) for the chemical reaction between cysteine and the redox mediator was obtained by chronoamperometry and found to be on the order of 10(5) s(-1) M(-1). Using a microelectrode array, it was possible to reach a limit of detection of 4.8 µM for cysteine. The results show that carbon paste microelectrodes can be easily integrated with paper-based analytical devices.


Asunto(s)
Electroquímica/instrumentación , Papel , Carbono/química , Catálisis , Cisteína/análisis , Cisteína/química , Indoles/química , Microelectrodos , Compuestos Organometálicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA