Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0299022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38829836

RESUMEN

Controlled Human Infection Models (CHIS) involve administering human pathogens to healthy participants in controlled medical settings, which can elicit complex bioethical issues. Understanding how the community perceives such studies can significantly increase the participant's sense of cooperation and increases the researcher's and the participant's transparency. The current study describes the development of an educational intervention to achieve these ends as it aims to (1) analyze perceptions of the Controlled Human Infection Studies (CHIS), and (2) evaluate the participants' comprehension of the CHIS. METHODS: This is a qualitative action research that includes the development of an educational intervention with residents of a rural area in Minas Gerais, Brazil, where there is continuous natural transmission of the human pathogen Necator americanus ("hookworm"). In this area, it is intended to carry out a proposed phase 3 vaccine clinical trial in the future to test the efficacy of hookworm vaccines using controlled human infection. Two data collection strategies were used: an educational intervention and a focus group. RESULTS: The participants' perceptions showed distinct perspectives on CHIS. On one side, they recognized that the investigation is essential for the community, but on the other side, they thought that there would be resistance to its conduct by fear of infection. The idea that the study would generate a benefit for the greater good, contributing to the prevention of hookworm infection, was clearly stated. The participants perceived that the study offered concrete risks that could be reduced by constant monitoring by the researchers. They also mentioned the importance of access to information and the positive influence those who express interest in participating in the study can exert in the community. In relation to comprehension the participants memorized the information, mobilized it to explain everyday situations and created strategies to disseminate the study and engage the community in its development. By repeating and making sense of the information, the participant not only assimilates the knowledge transmitted, but also creates new knowledge. CONCLUSION: We concluded that an educational process of discussion and dialogue around participants' perceptions about the CHIS, promotes understanding and allows ways to disseminate information about the research to be collectively created.


Asunto(s)
Necator americanus , Necatoriasis , Humanos , Brasil , Animales , Necator americanus/inmunología , Femenino , Necatoriasis/prevención & control , Necatoriasis/transmisión , Necatoriasis/inmunología , Masculino , Adulto , Infecciones por Uncinaria/prevención & control , Infecciones por Uncinaria/transmisión , Vacunas/inmunología , Persona de Mediana Edad , Participación de la Comunidad/métodos , Adulto Joven , Grupos Focales
2.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500680

RESUMEN

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Asunto(s)
Neoplasias del Colon , Liposomas , Nanopartículas , Microambiente Tumoral , Animales , Ratones , Ligandos , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Factor de Necrosis Tumoral alfa , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
3.
Viruses ; 15(8)2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37632046

RESUMEN

Critical COVID-19 has been associated with altered patterns of cytokines. Distinct inflammatory processes in systemic and pulmonary sites have been reported, but studies comparing these two sites are still scarce. We aimed to evaluate the profile of pulmonary and systemic cytokines and chemokines in critically ill COVID-19 patients. Levels of cytokines and chemokines were measured in plasma samples and minibronchoalveolar lavage of critical COVID-19 patients within 48 h and 5-8 days after intubation. Distinct inflammatory processes were observed in the lungs and blood, which were regulated separately. Survivor patients showed higher lung cytokine levels including IFN-γ, IL-2, IL-4, G-CSF, and CCL4, while nonsurvivors displayed higher levels in the blood, which included IL-6, CXCL8, CXCL10, CCL2, and CCL4. Furthermore, our findings indicate that high TNF and CXCL8 levels in the mini-BAL were associated with better lung oxygen exchange capacity, whereas high levels of IFN-γ in plasma were associated with worse lung function, as measured using the PaO2/FiO2 ratio. These results suggest that a robust and localized inflammatory response in the lungs is protective and associated with survival, whereas a systemic inflammatory response is detrimental and associated with mortality in critical COVID-19.


Asunto(s)
COVID-19 , Humanos , Citocinas , Plasma , Inflamación , Pulmón
4.
Life Sci ; 324: 121750, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142087

RESUMEN

AIMS: Millions of people died during the COVID-19 pandemic, but the vast majority of infected individuals survived. Now, some consequences of the disease, known as long COVID, are been revealed. Although the respiratory system is the target of Sars-CoV-2, COVID-19 can influence other parts of the body, including bone. The aim of this work was to investigate the impact of acute coronavirus infection in bone metabolism. MAIN METHODS: We evaluated RANKL/OPG levels in serum samples of patients with and without acute COVID-19. In vitro, the effects of coronavirus in osteoclasts and osteoblasts were investigated. In vivo, we evaluated the bone phenotype in a BSL2 mouse model of SARS-like disease induced by murine coronavirus (MHV-3). KEY FINDINGS: Patients with acute COVID-19 presented decreased OPG and increased RANKL/OPG ratio in the serum versus healthy individuals. In vitro, MHV-3 infected macrophages and osteoclasts, increasing their differentiation and TNF release. Oppositely, osteoblasts were not infected. In vivo, MHV-3 lung infection triggered bone resorption in the femur of mice, increasing the number of osteoclasts at 3dpi and decreasing at 5dpi. Indeed, apoptotic-caspase-3+ cells have been detected in the femur after infection as well as viral RNA. RANKL/OPG ratio and TNF levels also increased in the femur after infection. Accordingly, the bone phenotype of TNFRp55-/- mice infected with MHV-3 showed no signs of bone resorption or increase in the number of osteoclasts. SIGNIFICANCE: Coronavirus induces an osteoporotic phenotype in mice dependent on TNF and on macrophage/osteoclast infection.


Asunto(s)
Resorción Ósea , COVID-19 , Animales , Humanos , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular , COVID-19/metabolismo , Osteoblastos , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Pandemias , Fenotipo , Síndrome Post Agudo de COVID-19 , Ligando RANK/metabolismo , SARS-CoV-2/metabolismo , Virus de la Hepatitis Murina/metabolismo , Virus de la Hepatitis Murina/patogenicidad , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo
5.
Inflamm Res ; 72(5): 929-932, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36988640

RESUMEN

The blood levels of neutrophils are associated with the severity of COVID -19. However, their role in the pulmonary environment during COVID -19 severity is not clear. Here, we found a decrease in the neutrophil count in BAL (bronchoalveolar lavage) in non-survivors and in older patients (> 60 years). In addition, we have shown that older patients have higher serum concentration of CXCL8 and increased IL-10 expression by neutrophils.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , Anciano , Líquido del Lavado Bronquioalveolar , Pulmón , Pronóstico
6.
Curr Med Chem ; 30(34): 3846-3879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36154587

RESUMEN

Systemic arterial hypertension (SAH) is a major risk factor for several secondary diseases, especially cardiovascular and renal conditions. SAH has a high prevalence worldwide, and its precise and early recognition is important to prevent the development of secondary outcomes. In this field, the study of biomarkers represents an important approach to diagnosing and predicting the disease and its associated conditions. The use of biomarkers in hypertension and hypertension-related disorders, such as ischemic stroke, intracerebral hemorrhage, transient ischemic attack, acute myocardial infarction, angina pectoris and chronic kidney disease, are discussed in this review. Establishing a potential pool of biomarkers may contribute to a non-invasive and improved approach for their diagnosis, prognosis, risk assessment, therapy management and pharmacological responses to a therapeutic intervention to improve patients' quality of life and prevent unfavorable outcomes.


Asunto(s)
Hipertensión , Ataque Isquémico Transitorio , Accidente Cerebrovascular , Humanos , Calidad de Vida , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/prevención & control , Hemorragia Cerebral , Biomarcadores , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología
7.
Immunology ; 168(4): 684-696, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36349514

RESUMEN

Severe cases of COVID-19 present hyperinflammatory condition that can be fatal. Little is known about the role of regulatory responses in SARS-CoV-2 infection. In this study, we evaluated the phenotype of regulatory T cells in the blood (peripheral blood mononuclear cell) and the lungs (broncho-alveolar) of adult patients with severe COVID-19 under invasive mechanical ventilation. Our results show important dynamic variation on Treg cells phenotype during COVID-19 with changes in number and functional parameters from the day of intubation (Day 1 of intensive care unit admission) to Day 7. We observed that compared with surviving patients, non-survivors presented lower numbers of Treg cells in the blood. In addition, lung Tregs of non-survivors also displayed higher PD1 and lower FOXP3 expressions suggesting dysfunctional phenotype. Further signs of Treg dysregulation were observed in non-survivors such as limited production of IL-10 in the lungs and higher production of IL-17A in the blood and in the lungs, which were associated with increased PD1 expression. These findings were also associated with lower pulmonary levels of Treg-stimulating factors like TNF and IL-2. Tregs in the blood and lungs are profoundly dysfunctional in non-surviving COVID-19 patients.


Asunto(s)
COVID-19 , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/metabolismo , Leucocitos Mononucleares/metabolismo , SARS-CoV-2/metabolismo , Pulmón/metabolismo , Fenotipo , Factores de Transcripción Forkhead/metabolismo
8.
Semin Cell Dev Biol ; 144: 11-19, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36202693

RESUMEN

The world population's life expectancy is growing, and neurodegenerative disorders common in old age require more efficient therapies. In this context, neural stem cells (NSCs) are imperative for the development and maintenance of the functioning of the nervous system and have broad therapeutic applicability for neurodegenerative diseases. Therefore, knowing all the mechanisms that govern the self-renewal, differentiation, and cell signaling of NSC is necessary. This review will address some of these aspects, including the role of growth and transcription factors, epigenetic modulators, microRNAs, and extracellular matrix components. Furthermore, differentiation and transdifferentiation processes will be addressed as therapeutic strategies showing their significance for stem cell-based therapy.


Asunto(s)
MicroARNs , Células-Madre Neurales , Diferenciación Celular , Neurogénesis/fisiología , Neuronas , MicroARNs/genética
9.
Semin Cell Dev Biol ; 144: 3-10, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36192310

RESUMEN

Organoid development and organ-on-a-chip are technologies based on differentiating stem cells, forming 3D multicellular structures resembling organs and tissues in vivo. Hence, both can be strategically used for disease modeling, drug screening, and host-pathogen studies. In this context, this review highlights the significant advancements in the area, providing technical approaches to organoids and organ-on-a-chip that best imitate in vivo physiology.


Asunto(s)
Biomimética , Organoides , Sistemas Microfisiológicos , Células Madre
10.
Semin Cell Dev Biol ; 144: 87-96, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36182613

RESUMEN

Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.


Asunto(s)
Enfermedades Transmisibles , Organoides , Humanos , Tracto Gastrointestinal
11.
Nat Commun ; 13(1): 4831, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977933

RESUMEN

Both T cells and B cells have been shown to be generated after infection with SARS-CoV-2 yet protocols or experimental models to study one or the other are less common. Here, we generate a chimeric protein (SpiN) that comprises the receptor binding domain (RBD) from Spike (S) and the nucleocapsid (N) antigens from SARS-CoV-2. Memory CD4+ and CD8+ T cells specific for SpiN could be detected in the blood of both individuals vaccinated with Coronavac SARS-CoV-2 vaccine and COVID-19 convalescent donors. In mice, SpiN elicited a strong IFN-γ response by T cells and high levels of antibodies to the inactivated virus, but not detectable neutralizing antibodies (nAbs). Importantly, immunization of Syrian hamsters and the human Angiotensin Convertase Enzyme-2-transgenic (K18-ACE-2) mice with Poly ICLC-adjuvanted SpiN promotes robust resistance to the wild type SARS-CoV-2, as indicated by viral load, lung inflammation, clinical outcome and reduction of lethality. The protection induced by SpiN was ablated by depletion of CD4+ and CD8+ T cells and not transferred by antibodies from vaccinated mice. Finally, vaccination with SpiN also protects the K18-ACE-2 mice against infection with Delta and Omicron SARS-CoV-2 isolates. Hence, vaccine formulations that elicit effector T cells specific for the N and RBD proteins may be used to improve COVID-19 vaccines and potentially circumvent the immune escape by variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , Nucleocápside , Proteínas de la Nucleocápside , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
12.
Stem Cell Rev Rep ; 18(8): 2852-2871, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962176

RESUMEN

Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Animales , Humanos , Recién Nacido , Adulto , Neurogénesis/fisiología , Ventrículos Laterales , Neuronas , Neuroglía , Mamíferos
13.
J Neurogastroenterol Motil ; 28(3): 483-500, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35799242

RESUMEN

Background/Aims: Chagasic megacolon is caused by Trypanosoma cruzi, which promotes in several cases, irreversible segmental colonic dilation. This alteration is the major anatomic-clinical disorder, characterized by the enteric nervous system and muscle wall structural damage. Herein, we investigate how T. cruzi -induced progressive colonic structural changes modulate the colonic contractile pattern activity. Methods: We developed a murine model of T. cruzi-infection that reproduced long-term modifications of the enlarged colon. We evaluated colonic and total intestinal transit time in animals. The patterns of motor response at several time intervals between the acute and chronic phases were evaluated using the organ bath assays. Enteric motor neurons were stimulated by electric field stimulation. The responses were analyzed in the presence of the nicotinic and muscarinic acetylcholine receptor antagonists. Western blot was performed to evaluate the expression of nicotinic and muscarinic receptors. The neurotransmitter expression was analyzed by real-time polymerase chain reaction. Results: In the chronic phase of infection, there was decreased intestinal motility associated with decreased amplitude and rhythmicity of intestinal contractility. Pharmacological tests suggested a defective response mediated by acetylcholine receptors. The contractile response induced by acetylcholine was decreased by atropine in the acute phase while the lack of its action in the chronic phase was associated with tissue damage, and decreased expression of choline acetyltransferase, nicotinic subunits of acetylcholine receptors, and neurotransmitters. Conclusions: T. cruzi -induced damage of smooth muscles was accompanied by motility disorders such as decreased intestinal peristalsis and cholinergic system response impairment. This study allows integration of the natural history of Chagasic megacolon motility disorders and opens new perspectives for the design of effective therapeutic.

14.
PLoS Negl Trop Dis ; 16(5): e0010105, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35499991

RESUMEN

BACKGROUND: Epidemiological and experimental studies have shown a protective effect of helminth infections in weight gain and against the development of metabolic dysfunctions in the host. However, the mechanisms Treg cells exert in the helminth-obesity interface has been poorly investigated. The present study aimed to verify the influence of Heligmosomoides polygyrus infection in early stages of high fat diet-induced obesity. PRINCIPAL FINDINGS: The presence of infection was able to prevent exacerbated weight gain in mice fed with high fat diet when compared to non-infected controls. In addition, infected animals displayed improved insulin sensitivity and decreased fat accumulation in the liver. Obesity-associated inflammation was reduced in the presence of infection, demonstrated by lower levels of leptin and resistin, lower infiltration of Th1 and Th17 cells in adipose tissue, higher expression of IL10 and adiponectin, increased infiltration of Th2 and eosinophils in adipose tissue of infected animals. Of note, the parasite infection was associated with increased Treg frequency in adipose tissue which showed higher expression of cell surface markers of function and activation, like LAP and CD134. The infection could also increase adipose Treg suppressor function in animals on high fat diet. CONCLUSION: These data suggest that H. polygyrus modulates adipose tissue Treg cells with implication for weight gain and metabolic syndrome.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Tejido Adiposo , Animales , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Aumento de Peso
15.
Pathogens ; 11(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35335618

RESUMEN

The Zika virus (ZIKV) was first isolated from a rhesus macaque in the Zika forest of Uganda in 1947. Isolated cases were reported until 2007, when the first major outbreaks of Zika infection were reported from the Island of Yap in Micronesia and from French Polynesia in 2013. In 2015, ZIKV started to circulate in Latin America, and in 2016, ZIKV was considered by WHO to be a Public Health Emergency of International Concern due to cases of Congenital Zika Syndrome (CZS), a ZIKV-associated complication never observed before. After a peak of cases in 2016, the infection incidence dropped dramatically but still causes concern because of the associated microcephaly cases, especially in regions where the dengue virus (DENV) is endemic and co-circulates with ZIKV. A vaccine could be an important tool to mitigate CZS in endemic countries. However, the immunological relationship between ZIKV and other flaviviruses, especially DENV, and the low numbers of ZIKV infections are potential challenges for developing and testing a vaccine against ZIKV. Here, we discuss ZIKV vaccine development with the perspective of the immunological concerns implicated by DENV-ZIKV cross-reactivity and the use of a controlled human infection model (CHIM) as a tool to accelerate vaccine development.

16.
Elife ; 112022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35293862

RESUMEN

Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.


Asunto(s)
Anexina A1 , Dengue , Animales , Anexina A1/metabolismo , Dengue/tratamiento farmacológico , Humanos , Inflamación/patología , Ratones , Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
17.
J Infect Dis ; 225(1): 84-93, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34125227

RESUMEN

BACKGROUND: Increased levels of inflammatory cytokines are associated with severe dengue evolution, but the source of such hypercytokinemia is elusive. We investigated the contribution of innate lymphocytes, innate lymphoid cells (ILCs), and natural killer (NK) cells in cytokine production in early dengue infection. METHODS: Peripheral blood mononuclear cells of individuals with dengue without warning signs (DWS-) and dengue with warning signs and severe dengue (SD) presentation combined (DWS+) were obtained between 2 and 7 days since fever onset and submitted to flow cytometry without specific antigen stimulation to evaluate cytokines in ILC and NK cell subpopulations. RESULTS: ILCs and NK cells were found to be important sources of cytokines during dengue. ILCs of the DWS+/SD group displayed higher production of interferon gamma (IFN-γ) and interleukin (IL) 4/IL-13 when compared to DWS- individuals. On the other hand, NK Eomes+ cells of DWS- patients displayed higher IFN-γ production levels compared with the DWS+/SD group. Interestingly, when NK cells were identified by CD56 expression, DWS+/SD displayed higher frequency of IL-17 production compared with the DWS- group. CONCLUSIONS: These results indicate that ILCs and NK cells are important sources of inflammatory cytokines during acute dengue infection and display distinct profiles associated with different clinical forms.


Asunto(s)
Citocinas/metabolismo , Interferón gamma , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Dengue Grave , Citocinas/inmunología , Humanos , Inmunidad Innata , Leucocitos Mononucleares , Subgrupos Linfocitarios/metabolismo , Linfocitos , Dengue Grave/sangre , Dengue Grave/inmunología
18.
Stem Cell Rev Rep ; 18(2): 732-751, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34780018

RESUMEN

Stem cell therapy is an interesting approach for neural repair, once it can improve and increase processes, like angiogenesis, neurogenesis, and synaptic plasticity. In this regard, adult neural stem cells (NSC) are studied for their mechanisms of proliferation, differentiation and functionality in neural repair. Here, we describe novel neural differentiation methods. NSC from adult mouse brains and human adipose-derived stem cells (hADSC) were isolated and characterized regarding their neural differentiation potential based on neural marker expression profiles. For both cell types, their capabilities of differentiating into neuron-, astrocyte- and oligodendrocytes-like cells (NLC, ALC and OLC, respectively) were analyzed. Our methodologies were capable of producing NLC, ALC and OLC from adult murine and human transdifferentiated NSC. NSC showed augmented gene expression of NES, TUJ1, GFAP and PDGFRA/Cnp. Following differentiation induction into NLC, OLC or ALC, specific neural phenotypes were obtained expressing MAP2, GalC/O4 or GFAP with compatible morphologies, respectively. Accordingly, immunostaining for nestin+ in NSC, GFAP+ in astrocytes and GalC/O4+ in oligodendrocytes was detected. Co-cultured NLC and OLC showed excitability in 81.3% of cells and 23.5% of neuron/oligodendrocyte marker expression overlap indicating occurrence of in vitro myelination. We show here that hADSC can be transdifferentiated into NSC and distinct neural phenotypes with the occurrence of neuron myelination in vitro, providing novel strategies for CNS regeneration therapy. Superior Part: Schematic organization of obtaining and generating hNSC from hADSC and differentiation processes and phenotypic expression of neuron, astrocyte and oligodendrocyte markers (MAP2, GFAP and O4, respectively) and stem cell marker (NES) of differentiating hNSC 14 days after induction. The nuclear staining in blue corresponds to DAPI. bar = 100 µm. Inferior part: Neural phenotype fates in diverse differentiation media. NES: nestin; GFAP: Glial fibrillary acidic protein. MAP2: Microtubule-associated protein 2. TUJ1: ß-III tubulin. PDGFRA: PDGF receptor alpha. Two-way ANOVA with Bonferroni post-test with n = 3. * p < 0.05 and ** p < 0.01: (NSCiM1 NSC induction medium 1) vs differentiation media.


Asunto(s)
Transdiferenciación Celular , Células-Madre Neurales , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Nestina , Neurogénesis , Neuronas , Oligodendroglía
19.
PLoS One ; 16(10): e0258199, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34610039

RESUMEN

The Apicomplexa protozoan Toxoplasma gondii is a mandatory intracellular parasite and the causative agent of toxoplasmosis. This illness is of medical importance due to its high prevalence worldwide and may cause neurological alterations in immunocompromised persons. In chronically infected immunocompetent individuals, this parasite forms tissue cysts mainly in the brain. In addition, T. gondii infection has been related to mental illnesses such as schizophrenia, bipolar disorder, depression, obsessive-compulsive disorder, as well as mood, personality, and other behavioral changes. In the present study, we evaluated the kinetics of behavioral alterations in a model of chronic infection, assessing anxiety, depression and exploratory behavior, and their relationship with neuroinflammation and parasite cysts in brain tissue areas, blood-brain-barrier (BBB) integrity, and cytokine status in the brain and serum. Adult female C57BL/6 mice were infected by gavage with 5 cysts of the ME-49 type II T. gondii strain, and analyzed as independent groups at 30, 60 and 90 days postinfection (dpi). Anxiety, depressive-like behavior, and hyperactivity were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic T. gondii infection, in a direct association with the presence of parasite cysts and neuroinflammation, independently of the brain tissue areas, and linked to BBB disruption. These behavioral alterations paralleled the upregulation of expression of tumor necrosis factor (TNF) and CC-chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß and CCL5/RANTES) in the brain tissue. In addition, increased levels of interferon-gamma (IFNγ), TNF and CCL2/MCP-1 were detected in the peripheral blood, at 30 and 60 dpi. Our data suggest that the persistence of parasite cysts induces sustained neuroinflammation, and BBB disruption, thus allowing leakage of cytokines of circulating plasma into the brain tissue. Therefore, all these factors may contribute to behavioral changes (anxiety, depressive-like behavior, and hyperactivity) in chronic T. gondii infection.


Asunto(s)
Conducta Animal , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/parasitología , Inflamación/parasitología , Toxoplasma/fisiología , Toxoplasmosis Cerebral/parasitología , Animales , Ansiedad/complicaciones , Ansiedad/fisiopatología , Edema Encefálico/complicaciones , Edema Encefálico/fisiopatología , Enfermedad Crónica , Citocinas/metabolismo , Depresión/complicaciones , Depresión/fisiopatología , Femenino , Inflamación/fisiopatología , Locomoción , Ratones Endogámicos C57BL , Fuerza Muscular , Parásitos/fisiología , Factores de Tiempo , Toxoplasmosis Cerebral/fisiopatología , Regulación hacia Arriba
20.
Pharmaceutics ; 13(7)2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34371713

RESUMEN

Doxorubicin (DOX), a chemotherapy drug successfully used in the therapy of various types of cancer, is currently associated with the mucositis development, an inflammation that can cause ulcerative lesions in the mucosa of the gastrointestinal tract, abdominal pain and secondary infections. To increase the safety of the chemotherapy, we loaded DOX into nanostructured lipid carriers (NLCs). The NLC-DOX was characterized by HPLC, DLS, NTA, Zeta potential, FTIR, DSC, TEM and cryogenic-TEM. The ability of NLC-DOX to control the DOX release was evaluated through in vitro release studies. Moreover, the effect of NLC-DOX on intestinal mucosa was compared to a free DOX solution in C57BL/6 mice. The NLC-DOX showed spherical shape, high drug encapsulation efficiency (84.8 ± 4.6%), high drug loading (55.2 ± 3.4 mg/g) and low average diameter (66.0-78.8 nm). The DSC and FTIR analyses showed high interaction between the NLC components, resulting in controlled drug release. Treatment with NLC-DOX attenuated DOX-induced mucositis in mice, improving shortening on villus height and crypt depth, decreased inflammatory parameters, preserved intestinal permeability and increased expression of tight junctions (ZO-1 and Ocludin). These results indicated that encapsulation of DOX in NLCs is viable and reduces the drug toxicity to mucosal structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...