Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Oncol Rep ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39278885

RESUMEN

PURPOSE OF REVIEW: The goal of this review is to provide an overview of difficult airway management in the cancer population. RECENT FINDINGS: Difficult airways can be unanticipated; however, several anatomical and physiological features may predict difficult airway management, with several specific for the cancer patient population. New technologies and techniques for airway management, including non-invasive oxygenation, and even the utilization of ECMO, have led to better outcomes and decreased morbidity. Furthermore, the incorporation of multidisciplinary airway teams has helped reduce morbidity associated with predicted and known difficult airways. Cancer patients may exhibit or develop anatomic and physiologic features that may predispose them to difficulty with airway management. As our technologies for airway management continue to advance, as well as further commitment to more interdisciplinary collaboration, difficult airway management in the cancer population will continue to become safer.

2.
BMC Genomics ; 25(1): 766, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107687

RESUMEN

BACKGROUND: Many common diseases exhibit uncontrolled mTOR signaling, prompting considerable interest in the therapeutic potential of mTOR inhibitors, such as rapamycin, to treat a range of conditions, including cancer, aging-related pathologies, and neurological disorders. Despite encouraging preclinical results, the success of mTOR interventions in the clinic has been limited by off-target side effects and dose-limiting toxicities. Improving clinical efficacy and mitigating side effects require a better understanding of the influence of key clinical factors, such as sex, tissue, and genomic background, on the outcomes of mTOR-targeting therapies. RESULTS: We assayed gene expression with and without rapamycin exposure across three distinct body parts (head, thorax, abdomen) of D. melanogaster flies, bearing either their native melanogaster mitochondrial genome or the mitochondrial genome from a related species, D. simulans. The fully factorial RNA-seq study design revealed a large number of genes that responded to the rapamycin treatment in a sex-dependent and tissue-dependent manner, and relatively few genes with the transcriptional response to rapamycin affected by the mitochondrial background. Reanalysis of an earlier study confirmed that mitochondria can have a temporal influence on rapamycin response. CONCLUSIONS: We found significant and wide-ranging effects of sex and body part, alongside a subtle, potentially time-dependent, influence of mitochondria on the transcriptional response to rapamycin. Our findings suggest a number of pathways that could be crucial for predicting potential side effects of mTOR inhibition in a particular sex or tissue. Further studies of the temporal response to rapamycin are necessary to elucidate the effects of the mitochondrial background on mTOR and its inhibition.


Asunto(s)
Mitocondrias , Sirolimus , Animales , Sirolimus/farmacología , Femenino , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de los fármacos , Factores Sexuales , Serina-Treonina Quinasas TOR/metabolismo , Especificidad de Órganos/genética , Drosophila/genética , Drosophila/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Perfilación de la Expresión Génica
3.
Microorganisms ; 11(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38004775

RESUMEN

Rhizosphere interactions are an understudied component of citrus production. This is even more important in Florida flatwood soils, which pose significant challenges in achieving sustainable and effective fruit production due to low natural fertility and organic matter. Citrus growers apply soil amendments, including oak mulch, to ameliorate their soil conditions. Thus, the aim of this research was to evaluate the effects of oak mulch on citrus nutrient uptake, soil characteristics, and rhizosphere composition. The plant material consisted of 'Valencia' sweet orange (Citrus × sinensis) trees grafted on 'US-812' (C. reticulata × C. trifoliata) rootstock. The experiment consisted of two treatments, which included trees treated with oak mulch (300 kg of mulch per plot) and a control. The soil and leaf nutrient contents, soil pH, cation exchange capacity, moisture, temperature, and rhizosphere bacterial compositions were examined over the course of one year (spring and fall 2021). During the spring samplings, the citrus trees treated with oak mulch resulted in significantly greater soil Zn and Mn contents, greater soil moisture, and greater rhizosphere bacterial diversity compared to the control, while during the fall samplings, only a greater soil moisture content was observed in the treated trees. The soil Zn and Mn content detected during the spring samplings correlated with the significant increases in the diversity of the rhizosphere bacterial community composition. Similarly, the reduced rates of leaching and evaporation (at the soil surface) of oak mulch applied to Florida sandy soils likely played a large role in the significant increase in moisture and nutrient retention.

4.
Plants (Basel) ; 12(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37111884

RESUMEN

Huanglongbing (HLB) disease has caused a severe decline in citrus production globally over the past decade. There is a need for improved nutrient regimens to better manage the productivity of HLB-affected trees, as current guidelines are based on healthy trees. The aim of this study was to evaluate the effects of different fertilizer application methods and rates with different planting densities on HLB-affected citrus root and soil health. Plant material consisted of 'Ray Ruby' (Citrus × paradisi) grapefruit trees grafted on 'Kuharske' citrange (Citrus × sinensis × Citrus trifoliata). The study consisted of 4 foliar fertilizer treatments, which included 0×, 1.5×, 3× and 6× the University of Florida Institute of Food and Agriculture (UF/IFAS) recommended guidelines for B, Mn and Zn. Additionally, 2 ground-applied fertilizer treatments were used, specifically controlled-release fertilizer (CRF1): 12-3-14 + B, Fe, Mn and Zn micronutrients at 1× UF/IFAS recommendation, and (CRF2): 12-3-14 + 2× Mg + 3× B, Fe, Mn and Zn micronutrients, with micronutrients applied as sulfur-coated products. The planting densities implemented were low (300 trees ha-1), medium (440 trees ha-1) and high (975 trees ha-1). The CRF fertilizer resulted in greater soil nutrient concentrations through all of the time sampling points, with significant differences in soil Zn and Mn. Grapefruit treated with ground-applied CRF2 and 3× foliar fertilizers resulted in the greatest bacterial alpha and beta diversity in the rhizosphere. Significantly greater abundances of Rhizobiales and Vicinamibacterales were found in the grapefruit rhizosphere of trees treated with 0× UF/IFAS foliar fertilizer compared to higher doses of foliar fertilizers.

5.
Front Immunol ; 13: 940094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958587

RESUMEN

Access to liver transplantation is limited by a significant organ shortage. The recent introduction of machine perfusion technology allows surgeons to monitor and assess ex situ liver function prior to transplantation. However, many donated organs are of inadequate quality for transplant, though opportunities exist to rehabilitate organ function with adjunct therapeutics during normothermic machine perfusion. In this preclinical study, we targeted the apoptosis pathway as a potential method of improving hepatocellular function. Treatment of discarded human livers during normothermic perfusion with an irreversible pan-caspase inhibitor, emricasan, resulted in significant mitigation of innate immune and pro-inflammatory responses at both the transcriptional and protein level. This was evidenced by significantly decreased circulating levels of the pro-inflammatory cytokines, interleukin-6, interleukin-8, and interferon-gamma, compared to control livers. Compared to emricasan-treated livers, untreated livers demonstrated transcriptional changes notable for enrichment in pathways involved in innate immunity, leukocyte migration, and cytokine-mediated signaling. Targeting of unregulated apoptosis may represent a viable therapeutic intervention for immunomodulation during machine perfusion.


Asunto(s)
Trasplante de Hígado , Preservación de Órganos , Caspasas/metabolismo , Humanos , Inmunidad Innata , Hígado/metabolismo , Trasplante de Hígado/métodos , Preservación de Órganos/métodos , Perfusión/métodos
6.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G21-G33, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34730028

RESUMEN

Liver transplantation is hampered by a severe shortage of donor organs. Normothermic machine perfusion (NMP) of donor livers allows dynamic preservation in addition to viability assessment before transplantation. Little is known about the injury and repair mechanisms induced during NMP. To investigate these mechanisms, we examined gene and protein expression changes in a cohort of discarded human livers, stratified by hepatocellular function, during NMP. Six human livers acquired through donation after circulatory death (DCD) underwent 12 h of NMP. Of the six livers, three met predefined criteria for adequate hepatocellular function. We applied transcriptomic profiling and protein analysis to evaluate temporal changes in gene expression during NMP between functional and nonfunctional livers. Principal component analysis segregated the two groups and distinguished the various perfusion time points. Transcriptomic analysis of biopsies from functional livers indicated robust activation of innate immunity after 3 h of NMP followed by enrichment of prorepair and prosurvival mechanisms. Nonfunctional livers demonstrated delayed and persistent enrichment of markers of innate immunity. Functional livers demonstrated effective induction of autophagy, a cellular repair and homeostasis pathway, in contrast to nonfunctional livers. In conclusion, NMP of discarded DCD human livers results in innate immune-mediated injury, while also activating autophagy, a presumed mechanism for support of cellular repair. More pronounced activation of autophagy was seen in livers that demonstrated adequate hepatocellular function.NEW & NOTEWORTHY We demonstrate that ischemia-reperfusion injury occurs in all livers during NMP, though there are notable differences in gene expression between functional and nonfunctional livers. We further demonstrate that activation of the liver's repair and homeostasis mechanisms through autophagy plays a vital role in the graft's response to injury and may impact liver function. These findings indicate that liver autophagy might be a key therapeutic target for rehabilitating the function of severely injured or untransplantable livers.


Asunto(s)
Autofagia/fisiología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Hígado/patología , Daño por Reperfusión/patología , Humanos , Trasplante de Hígado/métodos , Donadores Vivos , Perfusión
7.
J Hered ; 113(1): 37-47, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34964900

RESUMEN

Mitochondria evolved from a union of microbial cells belonging to distinct lineages that were likely anaerobic. The evolution of eukaryotes required a massive reorganization of the 2 genomes and eventual adaptation to aerobic environments. The nutrients and oxygen that sustain eukaryotic metabolism today are processed in mitochondria through coordinated expression of 37 mitochondrial genes and over 1000 nuclear genes. This puts mitochondria at the nexus of gene-by-gene (G×G) and gene-by-environment (G×E) interactions that sustain life. Here we use a Drosophila model of mitonuclear genetic interactions to explore the notion that mitochondria are environments for the nuclear genome, and vice versa. We construct factorial combinations of mtDNA and nuclear chromosomes to test for epistatic interactions (G×G), and expose these mitonuclear genotypes to altered dietary environments to examine G×E interactions. We use development time and genome-wide RNAseq analyses to assess the relative contributions of mtDNA, nuclear chromosomes, and environmental effects on these traits (mitonuclear G×G×E). We show that the nuclear transcriptional response to alternative mitochondrial "environments" (G×G) has significant overlap with the transcriptional response of mitonuclear genotypes to altered dietary environments. These analyses point to specific transcription factors (e.g., giant) that mediated these interactions, and identified coexpressed modules of genes that may account for the overlap in differentially expressed genes. Roughly 20% of the transcriptome includes G×G genes that are concordant with G×E genes, suggesting that mitonuclear interactions are part of an organism's environment.


Asunto(s)
Drosophila , Genoma Mitocondrial , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Drosophila/genética , Epistasis Genética , Mitocondrias/genética
8.
Elife ; 102021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34324416

RESUMEN

Mutations in TP53 occur commonly in the majority of human tumors and confer aggressive tumor phenotypes, including metastasis and therapy resistance. CB002 and structural-analogs restore p53 signaling in tumors with mutant-p53 but we find that unlike other xanthines such as caffeine, pentoxifylline, and theophylline, they do not deregulate the G2 checkpoint. Novel CB002-analogs induce pro-apoptotic Noxa protein in an ATF3/4-dependent manner, whereas caffeine, pentoxifylline, and theophylline do not. By contrast to caffeine, CB002-analogs target an S-phase checkpoint associated with increased p-RPA/RPA2, p-ATR, decreased Cyclin A, p-histone H3 expression, and downregulation of essential proteins in DNA-synthesis and DNA-repair. CB002-analog #4 enhances cell death, and decreases Ki-67 in patient-derived tumor-organoids without toxicity to normal human cells. Preliminary in vivo studies demonstrate anti-tumor efficacy in mice. Thus, a novel class of anti-cancer drugs shows the activation of p53 pathway signaling in tumors with mutated p53, and targets an S-phase checkpoint.


Asunto(s)
Compuestos de Anilina/farmacología , Mutación , Purinas/farmacología , Puntos de Control de la Fase S del Ciclo Celular/genética , Transducción de Señal/efectos de los fármacos , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Compuestos de Anilina/química , Compuestos de Anilina/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Daño del ADN , Femenino , Humanos , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , Purinas/química , Purinas/uso terapéutico , Distribución Aleatoria , Ensayos Antitumor por Modelo de Xenoinjerto
9.
BMC Genomics ; 22(1): 213, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761878

RESUMEN

BACKGROUND: In addition to their well characterized role in cellular energy production, new evidence has revealed the involvement of mitochondria in diverse signaling pathways that regulate a broad array of cellular functions. The mitochondrial genome (mtDNA) encodes essential components of the oxidative phosphorylation (OXPHOS) pathway whose expression must be coordinated with the components transcribed from the nuclear genome. Mitochondrial dysfunction is associated with disorders including cancer and neurodegenerative diseases, yet the role of the complex interactions between the mitochondrial and nuclear genomes are poorly understood. RESULTS: Using a Drosophila model in which alternative mtDNAs are present on a common nuclear background, we studied the effects of this altered mitonuclear communication on the transcriptomic response to altered nutrient status. Adult flies with the 'native' and 'disrupted' genotypes were re-fed following brief starvation, with or without exposure to rapamycin, the cognate inhibitor of the nutrient-sensing target of rapamycin (TOR). RNAseq showed that alternative mtDNA genotypes affect the temporal transcriptional response to nutrients in a rapamycin-dependent manner. Pathways most greatly affected were OXPHOS, protein metabolism and fatty acid metabolism. A distinct set of testis-specific genes was also differentially regulated in the experiment. CONCLUSIONS: Many of the differentially expressed genes between alternative mitonuclear genotypes have no direct interaction with mtDNA gene products, suggesting that the mtDNA genotype contributes to retrograde signaling from mitochondria to the nucleus. The interaction of mitochondrial genotype (mtDNA) with rapamycin treatment identifies new links between mitochondria and the nutrient-sensing mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway.


Asunto(s)
Drosophila , Sirolimus , Animales , ADN Mitocondrial/genética , Drosophila/genética , Genotipo , Masculino , Mitocondrias/genética , Nutrientes , Sirolimus/farmacología
10.
Biochemistry ; 43(31): 10064-70, 2004 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-15287734

RESUMEN

We used tryptophan substitutions to characterize the beta M3 transmembrane domain (betaTM3) of the acetylcholine receptor (AChR). We generated 15 mutants with tryptophan substitutions within the betaTM3 domain, between residues R282W and I296W. The various mutants were injected into Xenopus oocytes, and expression levels were measured by [125I]-alpha-bungarotoxin binding. Expression levels of the M288W, I289W, L290W, and F293W mutants were similar to that of wild type, whereas the other mutants (R282W, Y283W, L284W, F286W, I287W, V291W, A292W, S294W, V295W, and I296W) were expressed at much lower levels than that of wild type. None of these tryptophan mutants produced peak currents larger than that of wild type. Five of the mutants, L284W, F286W, I287W, V295W, and I296W, were expressed at levels <15% of the wild type. I296W had the lowest expression levels and did not display any significant ACh-induced current, suggesting that this position is important for the function and assembly of the AChR. Tryptophan substitution at three positions, L284, V291, and A292, dramatically inhibited AChR assembly and function. A periodicity analysis of the alterations in AChR expression at positions 282-296 of the betaTM3 domain was consistent with an alpha-helical structure. Residues known to be exposed to the membrane lipids, including R282, M285, I289, and F293, were all found in all the upper phases of the oscillatory pattern. Mutants that were expressed at lower levels are clustered on one side of a proposed alpha-helical structure. These results were incorporated into a structural model for the spatial orientation of the TM3 of the Torpedo californica beta subunit.


Asunto(s)
Mutagénesis Sitio-Dirigida , Subunidades de Proteína/química , Subunidades de Proteína/genética , Receptores Colinérgicos/química , Receptores Colinérgicos/genética , Triptófano/genética , Acetilcolina/farmacología , Sustitución de Aminoácidos/genética , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Relación Dosis-Respuesta a Droga , Oocitos/metabolismo , Técnicas de Placa-Clamp , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Subunidades de Proteína/biosíntesis , Receptores Colinérgicos/biosíntesis , Torpedo , Xenopus laevis
11.
Biochemistry ; 42(42): 12243-50, 2003 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-14567686

RESUMEN

The functional role of the alphaM3 transmembrane domain of the Torpedo nicotinic acetylcholine receptor (AChR) was characterized by performing tryptophan-scanning mutagenesis at 13 positions within alphaM3, from residue M278 through I290. The expression of the mutants in Xenopus oocytes was measured by [(125)I]-alpha-bungarotoxin binding, and ACh receptor function was evaluated by using a two-electrode voltage clamp. Six mutants (L279W, F280W, I283W, V285W, S288W, and I289W) were expressed at lower levels than the wild type. Most of these residues have been proposed to face the interior of the protein. The I286W mutant was expressed at 2.4-fold higher levels than the wild type, and the two lipid-exposed mutations, F284W and S287W, were expressed at similar levels as wild type. Binding assays indicated that the alphaM3 domain can accommodate bulky groups in almost all positions. Three mutations, M282W, V285W, and I289W, caused a loss of receptor function, suggesting that the tryptophan side chains alter the conformational changes required for channel assembly or ion channel function. This loss of function suggests that these positions may be involved in helix-helix contacts that are critical for channel gating. The lipid-exposed mutation F284W enhances the receptor macroscopic response at low ACh concentrations and decreases the EC(50). Taken together, our results suggest that alphaM3 contributes to the gating machinery of the nicotinic ACh receptor and that alphaM3 is comprised of a mixture of two types of helical structures.


Asunto(s)
Receptores Colinérgicos/fisiología , Secuencia de Aminoácidos , Animales , Bungarotoxinas/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Técnicas de Placa-Clamp , Conformación Proteica , Ensayo de Unión Radioligante , Receptores Colinérgicos/química , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Homología de Secuencia de Aminoácido , Torpedo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA