Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(3): 2753-2766, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38888693

RESUMEN

The current burden associated to multidrug resistance, and the emerging superbugs, result in a decreased and even loss of antibiotic efficacy, which poses significant challenges in the treatment of infectious diseases. This situation has created a high demand for the discovery of novel antibiotics that are both effective and safe. However, while antibiotics play a crucial role in preventing and treating diseases, they are also associated with adverse effects. The emergence of multidrug-resistant and the extensive appearance of drug-resistant microorganisms, has become one of the major hurdles in healthcare. Addressing this problem will require the development of at least 20 new antibiotics by 2060. However, the process of designing new antibiotics is time-consuming. To overcome the spread of drug-resistant microbes and infections, constant evaluation of innovative methods and new molecules is essential. Research is actively exploring alternative strategies, such as combination therapies, new drug delivery systems, and the repurposing of existing drugs. In addition, advancements in genomic and proteomic technologies are aiding in the identification of potential new drug targets and the discovery of new antibiotic compounds. In this review, we explore new sources of natural antibiotics from plants, algae other sources, and propose innovative bioinspired delivery systems for their use as an approach to promoting responsible antibiotic use and mitigate the spread of drug-resistant microbes and infections.


Asunto(s)
Antibacterianos , Sistemas de Liberación de Medicamentos , Antibacterianos/farmacología , Humanos , Bacterias/efectos de los fármacos , Bacterias/genética , Productos Biológicos/farmacología , Productos Biológicos/química , Farmacorresistencia Bacteriana Múltiple , Animales , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología
2.
Foods ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38890850

RESUMEN

Bixin is the main carotenoid found in the outer portion of the seeds of Bixa orellana L., commercially known as annatto. This compound is industrially employed in pharmaceutical, cosmetic, and food formulations as a natural dye to replace chemical additives. This study aimed to extract bixin from annatto seeds and obtain encapsulated bixin in a powder form, using freeze-drying encapsulation and maltodextrin as encapsulating agent. Bixin was extracted from annatto seeds employing successive washing with organic solvents, specifically hexane and methanol (1:1 v/v), followed by ethyl acetate and dichloromethane for subsequent washes, to effectively remove impurities and enhance bixin purity, and subsequent purification by crystallization, reaching 1.5 ± 0.2% yield (or approximately 15 mg of bixin per gram of seeds). Bixin was analyzed spectrophotometrically in different organic solvents (ethanol, isopropyl alcohol, dimethylsulfoxide, chloroform, hexane), and the solvents chosen were chloroform (used to solubilize bixin during microencapsulation) and hexane (used for spectrophotometric determination of bixin). Bixin was encapsulated according to a 22 experimental design to investigate the influence of the concentration of maltodextrin (20 to 40%) and bixin-to-matrix ratio (1:20 to 1:40) on the encapsulation efficiency (EE%) and solubility of the encapsulated powder. Higher encapsulation efficiency was obtained at a maltodextrin concentration of 40% w/v and a bixin/maltodextrin ratio of 1:20, while higher solubility was observed at a maltodextrin concentration of 20% w/v for the same bixin/maltodextrin ratio. The encapsulation of this carotenoid by means of freeze-drying is thus recognized as an innovative and promising approach to improve its stability for further processing in pharmaceutical and food applications.

3.
Heliyon ; 8(2): e08893, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198766

RESUMEN

The use of natural products in sunscreen formulations as a prophylactic measure against skin cancer is receiving special attention attributed to the photoprotective and antioxidant properties of their chemical components. In this work, we describe the development of topical hydrogel formulations containing hydroalcoholic extract of red propolis (HERP), and the evaluation of the dermal sensitizing effect of the developed products. Sunscreen formulations composed of HERP in different concentrations (1.5, 2.5 or 3.5% w/w) alone or in combination with a chemical (octyl methoxycinnamate) and/or physical (titanium dioxide) filters were developed using poloxamer 407 as gel basis. The preliminary and accelerated stability tests, texture analysis and spreadability tests were performed. All formulations revealed to be stable in preliminary stability assessment. The formulations containing HERP 1.5 and 2.5% alone or associated with the filters showed intense modifications during accelerated stability test, which were confirmed by rheological analyses. The incorporation of HERP and filters in the poloxamer hydrogel decreased the toughness of product (p < 0.05) and the formulation containing HERP alone presented the lowest adhesivity (p < 0.001). The incorporation of HERP in the hydrogel decreased the poloxamer transition temperature, showing different rheological behavior with the increase of HERP concentration. The developed formulations were stable, exhibited non-Newtonian and pseudoplastic behavior, showing in vivo skin compatibility and no skin irritancy.

4.
Biochimie ; 192: 83-90, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34653542

RESUMEN

Bacillus thuringiensis (Bt) is a ubiquitous bacterium that produces several proteins that are toxic to different invertebrates such as insects, nematodes, mites, and also some protozoans. Among these, Cry and Cyt proteins are most explored as biopesticides for their action against agricultural pests and vectors of human diseases. In 2000, a group of researchers from Japan isolated parasporal inclusion proteins from B. thuringiensis, and reported their cytotoxic action against human leukemia. Later, other proteins with similar antitumor properties were also isolated from this bacterium and these cytotoxic proteins with specific activity against human cancer cells were named parasporins. At present, nineteen different parasporins are registered and classified in six families. These parasporins have been described to have specific in vitro antitumor activity against several cancer cell lines. The antitumor activity makes parasporins possible candidates as anticancer agents. Various research groups around the world are involved in isolating and characterizing in vitro antitumor activity of these proteins and many articles reporting such activities in detail have been published. However, there are virtually no data regarding the antitumor activity of parasporins in vivo. This review summarizes the properties of these potentially useful antitumor agents of natural origin, focusing on their in vivo activity thus also highlighting the importance of testing these proteins in animal models for a possible application in clinical oncology.


Asunto(s)
Bacillus thuringiensis/química , Proteínas Bacterianas , Citotoxinas , Endotoxinas , Cuerpos de Inclusión Intranucleares/química , Leucemia/tratamiento farmacológico , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/uso terapéutico , Línea Celular Tumoral , Citotoxinas/química , Citotoxinas/uso terapéutico , Endotoxinas/química , Endotoxinas/uso terapéutico , Humanos , Leucemia/metabolismo , Control Biológico de Vectores
5.
Oxid Med Cell Longev ; 2021: 6584693, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-39071243

RESUMEN

Medicinal plants are being used worldwide for centuries for their beneficial properties. Some of the most popular medicinal plants belong to the Melissa genus, and different health beneficial effects have already been identified for this genus. Among these species, in particular, the Melissa officinalis L. has been reported as having many biological activities, such as antioxidant, antimicrobial, antitumour, antiviral, antiallergic, anti-inflammatory, and also flatulence inhibiting effects. The beneficial properties of the Melissa officinalis, also known as "lemon balm herb", can be related to the bioactive compounds such as terpenoids, alcohols, rosmarinic acid, and phenolic antioxidants which are present in the plant. In this updated review, the botanical, geographical, nutritional, phytochemical, and traditional medical aspects of M. officinalis have been considered as well as in vitro and in vivo and clinically proven therapeutic properties have been reviewed with a special focus on health-promoting effects and possible perspective nutraceutical applications. To evidence the relevance of this plant in the research and completely assess the context, a literature quantitative research analysis has been performed indicating the great interest towards this plant for its beneficial properties.

6.
Nutrients ; 12(10)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993069

RESUMEN

Propolis has various pharmacological properties of clinical interest, and is also considered a functional food. In particular, hydroalcoholic extracts of red propolis (HERP), together with its isoflavonoid formononetin, have recognized antioxidant and anti-inflammatory properties, with known added value against dyslipidemia. In this study, we report the gastroprotective effects of HERP (50-500 mg/kg, p.o.) and formononetin (10 mg/kg, p.o.) in ethanol and non-steroidal anti-inflammatory drug-induced models of rat ulcer. The volume, pH, and total acidity were the evaluated gastric secretion parameters using the pylorus ligature model, together with the assessment of gastric mucus contents. The anti-Helicobacter pylori activities of HERP were evaluated using the agar-well diffusion method. In our experiments, HERP (250 and 500 mg/kg) and formononetin (10 mg/kg) reduced (p < 0.001) total lesion areas in the ethanol-induced rat ulcer model, and reduced (p < 0.05) ulcer indices in the indomethacin-induced rat ulcer model. Administration of HERP and formononetin to pylorus ligature models significantly decreased (p < 0.01) gastric secretion volumes and increased (p < 0.05) mucus production. We have also shown the antioxidant and anti-Helicobacter pylori activities of HERP. The obtained results indicate that HERP and formononetin are gastroprotective in acute ulcer models, suggesting a prominent role of formononetin in the effects of HERP.


Asunto(s)
Antiulcerosos/uso terapéutico , Antioxidantes/uso terapéutico , Ascomicetos/metabolismo , Isoflavonas/uso terapéutico , Própolis/uso terapéutico , Úlcera Gástrica/tratamiento farmacológico , Animales , Antiinflamatorios , Antiinflamatorios no Esteroideos/uso terapéutico , Antiulcerosos/administración & dosificación , Antioxidantes/administración & dosificación , Modelos Animales de Enfermedad , Dislipidemias/tratamiento farmacológico , Etanol/efectos adversos , Femenino , Jugo Gástrico , Mucosa Gástrica/efectos de los fármacos , Helicobacter pylori/efectos de los fármacos , Isoflavonas/administración & dosificación , Masculino , Moco/efectos de los fármacos , Própolis/administración & dosificación , Ratas , Ratas Wistar , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/microbiología
7.
Foods ; 9(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823508

RESUMEN

Rosemary, an aromatic herb with significant antioxidative activity, is frequently used as food preservative and a source of nutraceuticals. Its antioxidant effect is mainly related to the presence of phenolic compounds, molecules considerably unstable and prone to irreversible physicochemical changes when exposed to external agents. We here proposed the loading of rosemary into structured lipid systems to improve its physicochemical properties. Four formulations were prepared using the same amount of rosemary lyophilized extract. The lipid phase was composed of stearic acid and oleic acid, and the aqueous phase, a varying combination of drying carriers (whey protein concentrate or gum Arabic) and surfactant (Poloxamer 188). The formulations were sonicated, spray-dried, and the obtained powders were characterized regarding the density (0.18 g/mL to 0.26 g/mL), particle size distribution (7 µm and 52 µm), and water solubility (29% to 48%). The antioxidant activity was determined by applying ABTS•+ radical-scavenging assay and the results expressed per gram of lyophilized extract (150.6 µmol Trolox/g to 376.4 µmol Trolox/g), with a significantly lower/higher result seen for formulations containing gum Arabic and a higher concentration of Poloxamer. The prepared systems may have potential applications as preservative in foodstuff and as nutraceutical.

8.
Biomolecules ; 10(7)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630018

RESUMEN

Several pharmacological properties are attributed to ergot alkaloids as a result of their antibacterial, antiproliferative, and antioxidant effects. Although known for their biomedical applications (e.g., for the treatment of glaucoma), most ergot alkaloids exhibit high toxicological risk and may even be lethal to humans and animals. Their pharmacological profile results from the structural similarity between lysergic acid-derived compounds and noradrenalin, dopamine, and serotonin neurotransmitters. To reduce their toxicological risk, while increasing their bioavailability, improved delivery systems were proposed. This review discusses the safety aspects of using ergot alkaloids in ocular pharmacology and proposes the development of lipid and polymeric nanoparticles for the topical administration of these drugs to enhance their therapeutic efficacy for the treatment of glaucoma.


Asunto(s)
Alcaloides de Claviceps/farmacocinética , Alcaloides de Claviceps/uso terapéutico , Oftalmopatías/tratamiento farmacológico , Administración Tópica , Animales , Disponibilidad Biológica , Alcaloides de Claviceps/química , Humanos , Lípidos/química , Nanopartículas , Polímeros/química
9.
Biomolecules ; 10(5)2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384801

RESUMEN

Brazilian red propolis has been proposed as a new source of compounds with cytotoxic activity. Red propolis is a resinous material of vegetal origin, synthesized from the bees of the Appis mellifera family, with recognized biological properties. To obtain actives of low polarity and high cytotoxic profile from red propolis, in this work, we proposed a new solvent accelerated extraction method. A complete 23 factorial design was carried out to evaluate the influence of the independent variables or factors (e.g., temperature, number of cycles, and extraction time) on the dependent variable or response (i.e., yield of production). The extracts were analyzed by gas chromatography coupled with mass spectrometry for the identification of chemical compounds. Gas chromatography analysis revealed the presence of hydrocarbons, alcohols, ketones, ethers, and terpenes, such as lupeol, lupenone, and lupeol acetate, in most of the obtained extracts. To evaluate the cytotoxicity profile of the obtained bioactives, the 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide colorimetric assay was performed in different tumor cell lines (HCT116 and PC3). The results show that the extract obtained from 70 °C and one cycle of extraction of 10 min exhibited the highest cytotoxic activity against the tested cell lines. The highest yield, however, did not indicate the highest cytotoxic activity, but the optimal extraction conditions were indeed dependent on the temperature (i.e., 70 °C).


Asunto(s)
Antineoplásicos/química , Própolis/química , Alcoholes/análisis , Antineoplásicos/toxicidad , Línea Celular Tumoral , Éteres/análisis , Humanos , Cetonas/análisis , Própolis/toxicidad , Terpenos/análisis
10.
Biomolecules ; 10(5)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365717

RESUMEN

Essential oils (EOs) are widely used in various industrial sectors but can present several instability problems when exposed to environmental factors. Encapsulation technologies are effective solutions to improve EOs properties and stability. Currently, the encapsulation in lipid nanoparticles has received significant attention, due to the several recognized advantages over conventional systems. The study aimed to investigate the influence of the lipid matrix composition and spray-drying process on the physicochemical properties of the lipid-based nanoparticles loaded with Lippia sidoides EO and their retention efficiency for the oil. The obtained spray-dried products were characterized by determination of flow properties (Carr Index: from 25.0% to 47.93%, and Hausner ratio: from 1.25 to 1.38), moisture (from 3.78% to 5.20%), water activity (<0.5), and powder morphology. Zeta potential, mean particle size and polydispersity index, of the redispersed dried product, fell between -25.9 mV and -30.9 mV, 525.3 nm and 1143 nm, and 0.425 and 0.652, respectively; showing slight differences with the results obtained prior to spray-drying (from -16.4 mV to -31.6 mV; 147 nm to 1531 nm; and 0.459 to 0.729). Thymol retention in the dried products was significantly lower than the values determined for the liquid formulations and was affected by the drying of nanoparticles.


Asunto(s)
Liposomas/química , Lippia/química , Nanopartículas/química , Aceites Volátiles/química , Secado por Pulverización , Aceites Volátiles/administración & dosificación , Timol/química
11.
Molecules ; 25(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041134

RESUMEN

Essential oils are odorant liquid oily products consisting of a complex mixture of volatile compounds obtained from a plant raw material. They have been increasingly proven to act as potential natural agents in the treatment of several human conditions, including diabetes mellitus (DM). DM is a metabolic disorder characterized by chronic hyperglycemia closely related to carbohydrate, protein and fat metabolism disturbances. In order to explore novel approaches for the management of DM our group proposes the encapsulation of sucupira essential oil, obtained from the fruits of the Brazilian plants of the genus Pterodon, in nanostructured lipid carriers (NLCs), a second generation of lipid nanoparticles which act as new controlled drug delivery system (DDS). Encapsulation was performed by hot high-pressure homogenization (HPH) technique and the samples were then analyzed by dynamic light scattering (DLS) for mean average size and polydispersity index (PI) and by electrophoretic light scattering (ELS) for zeta potential (ZP), immediately after production and after 24 h of storage at 4 °C. An optimal sucupira-loaded NLC was found to consist of 0.5% (m/V) sucupira oil, 4.5% (m/V) of Kollivax® GMS II and 1.425% (m/V) of TPGS (formulation no. 6) characterized by a mean particle size ranging from 148.1 ± 0.9815 nm (0 h) to 159.3 ± 9.539 nm (at 24 h), a PI from 0.274 ± 0.029 (0 h) to 0.305 ± 0.028 (24 h) and a ZP from -0.00236 ± 0.147 mV (at 0 h) to 0.125 ± 0.162 (at 24 h). The encapsulation efficiency and loading capacity were 99.98% and 9.6%, respectively. The optimized formulation followed a modified release profile fitting the first order kinetics, over a period of 8 h. In vitro cytotoxicity studies were performed against Caco-2 cell lines, for which the cell viability above 90% confirmed the non-cytotoxic profile of both blank and sucupira oil-loaded NLC.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Brasil , Células CACO-2 , Línea Celular Tumoral , Excipientes/química , Humanos , Nanopartículas/química , Tamaño de la Partícula
12.
J Dermatolog Treat ; 30(6): 617-626, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29856232

RESUMEN

Nanomedicine manipulates materials at atomic, molecular, and supramolecular scale, with at least one dimension within the nanometer range, for biomedical applications. The resulting nanoparticles have been consistently shown beneficial effects for antifungal drugs delivery, overcoming the problems of low bioavailability and high toxicity of these drugs. Due to their unique features, namely the small mean particle size, nanoparticles contribute to the enhanced drug absorption and uptake by the target cells, potentiating the therapeutic drug effect. The topical route is desirable due to the adverse effects arising from oral administration. This review provides a comprehensive analysis of the use of nano compounds for the current treatment of topical fungal infections. A special emphasis is given to the employment of lipid nanoparticles, due to their recognized efficacy, versatility, and biocompatibility, attracting the major attention as novel topical nanocompounds used for the administration of antifungal drugs.


Asunto(s)
Antifúngicos/química , Portadores de Fármacos/química , Nanoestructuras/química , Administración Cutánea , Antifúngicos/uso terapéutico , Humanos , Liposomas/química , Micosis/tratamiento farmacológico , Micosis/patología , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/microbiología , Enfermedades de la Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA