Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 171301, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423320

RESUMEN

The occurrence of harmful algal blooms (HABs) in freshwater environments has been expanded worldwide with growing frequency and severity. HABs can pose a threat to public water supplies, raising concerns about safety of treated water. Many studies have provided valuable information about the impacts of HABs and management strategies on the early-stage treatment processes (e.g., pre-oxidation and coagulation/flocculation) in conventional drinking water treatment plants (DWTPs). However, the potential effect of HAB-impacted water in the granular media filtration has not been well studied. Biologically-active filters (BAFs), which are used in drinking water treatment and rely largely on bacterial community interactions, have not been examined during HABs in full-scale DWTPs. In this study, we assessed the bacterial community structure of BAFs, functional profiles, assembly processes, and bio-interactions in the community during both severe and mild HABs. Our findings indicate that bacterial diversity in BAFs significantly decreases during severe HABs due to the predominance of bloom-associated bacteria (e.g., Spingopyxis, Porphyrobacter, and Sphingomonas). The excitation-emission matrix combined with parallel factor analysis (EEM-PARAFAC) confirmed that filter influent affected by the severe HAB contained a higher portion of protein-like substances than filter influent samples during a mild bloom. In addition, BAF community functions showed increases in metabolisms associated with intracellular algal organic matter (AOM), such as lipids and amino acids, during severe HABs. Further ecological process and network analyses revealed that severe HAB, accompanied by the abundance of bloom-associated taxa and increased nutrient availability, led to not only strong stochastic processes in the assembly process, but also a bacterial community with lower complexity in BAFs. Overall, this study provides deeper insights into BAF bacterial community structure, function, and assembly in response to HABs.


Asunto(s)
Agua Potable , Filtración , Floraciones de Algas Nocivas , Purificación del Agua , Purificación del Agua/métodos , Agua Potable/microbiología , Bacterias , Microbiota , Microbiología del Agua
2.
J Occup Environ Hyg ; 20(5-6): 219-225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37084403

RESUMEN

The occurrence of antibiotic-resistant bacteria (ARB) in wastewater treatment plants (WWTPs) has become an occupational and environmental concern. WWTPs are engineered systems that treat wastewater to meet public health standards before release into the environment. The residuals, as either effluent or solids, are then discharged or beneficially recycled into the environment. Since these wastes contain a diverse array of microorganisms, some of which are resistant to commonly used antibiotics, there is a potential for these organisms to spread in the environment via residual recycling and effluent discharge. Human infections with ARB are increasing, and it is not well known how the interaction between humans and the environment plays a role in this process. WWTP workers, who are on the front lines, may come into direct contact with materials containing these microbes. This study aimed to determine the number of ARB present in both air and sewage sludges in a WWTP using nonselective media supplemented with two antibiotics (ciprofloxacin and azithromycin). The densities of total heterotrophic bacteria, ciprofloxacin-resistant bacteria, and azithromycin-resistant bacteria were 7.82 × 105 - 4.7 × 109, 7.87 × 103 - 1.05 × 108, and 2.27 × 105 - 1.16 × 109 CFU/g, respectively. The prevalence [(concentration on medium with antibiotics/concentration on medium without antibiotics) × 100] of ciprofloxacin-resistant bacteria in treated sludge was twice as low as in digested sludge and approximately three times lower than in raw sludge. For azithromycin, the prevalence of resistant bacteria in treated sludge was about the same in digested and nearly twice lower than in raw sludge. Despite a marked reduction in the mean prevalence of resistant bacteria in dewatered treated sludge for both antibiotics, these differences were not significant. The highest prevalence of antibiotic resistance was observed for azithromycin. Similarly, the prevalence of airborne azithromycin-resistant bacteria inside the belt filter press room (BFPR) was nearly seven times higher than the prevalence of airborne ciprofloxacin-resistant bacteria. These concentrations of ARB were not negligible and may represent an exposure pathway for some workers in WWTPs.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Humanos , Aguas del Alcantarillado/microbiología , Azitromicina/farmacología , Eliminación de Residuos Líquidos , Genes Bacterianos , Ciprofloxacina/farmacología , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Antibacterianos/farmacología
3.
Appl Microbiol Biotechnol ; 107(4): 1095-1106, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36648524

RESUMEN

Accidental oil spills can result in catastrophic ecological insults and therefore require rapid intervention to mitigate the potential impacts to aquatic ecosystems. One of the largest oil spills, known as the Deepwater Horizon oil spill, occurred in the Spring of 2010 near the coast of Louisiana (USA) due to an explosion during oil drilling activities. Millions of gallons of oil were released into the Gulf of Mexico, impacting thousands of ocean miles and coastal areas linked to the gulf. Among the actions taken during the remediation efforts was the unprecedented large use of Corexit dispersants, including at the subsurface to prevent oil from reaching the surface. While there is evidence that dispersants can accelerate the biodegradation of oil, reports on their potential toxicity to aquatic biota and to microbial functions have also been documented. In this review, we will examine the most recent literature on the impact of dispersants on microbial communities implicated in oil degradation and overall ecological networks. The primary focus will be on studies using Corexit but other dispersants will be discussed if data are available. We will share the literature gaps identified and discuss future work that is needed to reconcile some of the discrepancies found on the effectiveness of dispersants on oil degradation and their potential toxicity. KEY POINTS: • Chemical dispersants have been applied as a chemical response measure for oil spills. • The effects of chemical dispersants on microbial communities have been the subject of substantial research. • This work seeks to review recent work on the impact of chemical dispersants on oil biodegradation, microbial communities, and ecosystems.


Asunto(s)
Microbiota , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Biodegradación Ambiental , Golfo de México , Contaminantes Químicos del Agua/metabolismo , Petróleo/metabolismo
4.
Microbiol Spectr ; 9(2): e0081721, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34668732

RESUMEN

The use of enterococci as a fecal indicator bacterial group for public health risk assessment has been brought into question by recent studies showing that "naturalized" populations of Enterococcus faecalis exist in the extraenteric environment. The extent to which these naturalized E. faecalis organisms can confound water quality monitoring is unclear. To determine if strains isolated from different habitats display different survival strategies and responses, we compared the decay patterns of three E. faecalis isolates from the natural environment (environmental strains) against three human gut isolates (enteric strains) in laboratory mesocosms that simulate an oligotrophic, aerobic freshwater environment. Our results showed similar overall decay rates between enteric and environmental isolates based on viable plate and quantitative PCR (qPCR) counts. However, the enteric isolates exhibited a spike in copy number ratios of 16S rRNA gene transcripts to 16S rRNA gene DNA copies (rRNA:rDNA ratios) between days 1 and 3 of the mesocosm incubations that was not observed in environmental isolates, which could indicate a different stress response. Nevertheless, there was no strong evidence of differential gene expression between environmental and enteric isolates related to habitat adaptation in the accompanying mesocosm metatranscriptomes. Overall, our results provide novel information on how rRNA levels may vary over different growth conditions (e.g., standard lab versus oligotrophic) for this important indicator bacteria. We also observed some evidence for habitat adaptation in E. faecalis; however, this adaptation may not be substantial or consistent enough for integration in water quality monitoring. IMPORTANCE Enterococci are commonly used worldwide to monitor environmental fecal contamination and public health risk for waterborne diseases. However, closely related enterococci strains adapted to living in the extraenteric environment may represent a lower public health risk and confound water quality estimates. We developed an rRNA:rDNA viability assay for E. faecalis (a predominant species within this fecal group) and tested it against both enteric and environmental isolates in freshwater mesocosms to assess whether this approach can serve as a more sensitive water quality monitoring tool. We were unable to reliably distinguish the different isolate types using this assay under the conditions tested; thus, environmental strains should continue to be counted during routine water monitoring. However, this assay could be useful for distinguishing more recent (i.e., higher-risk) fecal pollution because rRNA levels significantly decreased after 1 week in all isolates.


Asunto(s)
Adaptación Fisiológica/fisiología , ADN Ribosómico/genética , Enterococcus faecalis/genética , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Biología Computacional/métodos , Enterococcus faecalis/aislamiento & purificación , Monitoreo del Ambiente , Heces/microbiología , Agua Dulce/microbiología , Dosificación de Gen/genética , Humanos , Intestinos/microbiología , Transcriptoma/genética , Microbiología del Agua , Calidad del Agua
5.
Front Microbiol ; 12: 625324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967975

RESUMEN

Microbial drinking water quality in premise plumbing systems (PPSs) strongly affects public health. Bacterial community structure is the essential aspect of microbial water quality. Studies have elucidated the microbial community structure in cold tap water, while the microbial community structures in hot tap and shower water are poorly understood. We sampled cold tap, hot tap, and shower water from a simulated PPS monthly for 16 consecutive months and assessed the bacterial community structures in those samples via high-throughput sequencing of bacterial 16S rRNA genes. The total relative abundance of the top five most abundant phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes) was greater than 90% among the 24 identified phyla. The most abundant families were Burkholderiaceae, Sphingomonadaceae, unclassified Alphaproteobacteria, unclassified Corynebacteriales, and Mycobacteriaceae. A multiple linear regression suggests that the bacterial community diversity increased with water temperature and the age of the simulated PPS, decreased with total chlorine residual concentration, and had a limited seasonal variation. The bacterial community in hot tap water had significantly lower Shannon and Inverse Simpson diversity indices (p < 0.05) and thus a much lower diversity than those in cold tap and shower water. The paradoxical results (i.e., diversity increased with water temperature, but hot tap water bacterial community was less diverse) were presumably because (1) other environmental factors made hot tap water bacterial community less diverse, (2) the diversity of bacterial communities in all types of water samples increased with water temperature, and (3) the first draw samples of hot tap water could have a comparable or even lower temperature than shower water samples and the second draw samples of cold tap water. In both a three-dimensional Non-metric multidimensional scaling ordination plot and a phylogenetic dendrogram, the samples of cold tap and shower water cluster and are separate from hot tap water samples (p < 0.05). In summary, the bacterial community in hot tap water in the simulated PPS had a distinct structure from and a much lower diversity than those in cold tap and shower water.

6.
Ecotoxicology ; 30(3): 411-420, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33675450

RESUMEN

Calanoid copepods are integral to aquatic food webs and may drive the bioaccumulation of toxins and heavy metals, spread of infectious diseases, and occurrence of toxic cyanobacterial harmful algal blooms (HABs) in freshwater aquatic systems. However, interrelationships between copepod and cyanobacterial population dynamics and ecophysiology remain unclear. Insights into these relationships are important to aquatic resource management, as they may help guide mitigation efforts. We developed a calanoid copepod qPCR assay to investigate how copepod abundance and physiological status relate to the abundance of cyanobacteria and the concentration of total microcystin in a HAB-prone freshwater multi-use eutrophic lake. Through in silico and in vitro validation of primers and analyses of time series, we demonstrate that our assay can be used as a reliable tool for environmental monitoring. Importantly, copepod RNA:DNA ratios on and shortly after the day when microcystin concentration was at its highest within the lake were not significantly lower (or higher) than before or after this period, suggesting that copepods may have been tolerant of microcystin levels observed and capable of perpetuating bloom events by consuming competitors of toxic cyanobacteria.


Asunto(s)
Copépodos , Cianobacterias , Animales , Copépodos/genética , Cianobacterias/genética , ADN , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Lagos , Microcistinas , ARN Ribosómico
7.
Sci Total Environ ; 751: 141409, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32882545

RESUMEN

To address the adverse effects of harmful algal blooms, there are increased demands over the implementation of ozone coupled with biologically active carbon (BAC) filters in the drinking water treatment plants. Although the microbial biofilms are vital elements to support the proper performance of BAC filters, except for taxonomic affiliations, little is known about the assembly mechanisms of microbial communities in the full-scale BAC filters. This study aimed to examine how the assembly processes and their associated factors (e.g., influent characteristics, biological interactions) drive the temporal dynamics of bacterial communities in full-scale BAC filters, which underwent ozone implementation (five consecutive seasons from 2017 to 2018). The results revealed that along with the increase of bacterial taxonomic richness and evenness, stochastic processes became more crucial to determine the bacterial community assembly in the summer and autumn after ozone implementation (relative contribution: 61.23% and 83.75%, respectively). Moreover, their corresponding networks possessed simple network structures with lower modularity than other seasons, which implied lesser biological interactions among bacterial populations. The correlation between taxonomic and predicted functional diversities using functional redundancy index indicated that relatively high levels of bacterial functional redundancy (>0.83) were generally present in BAC filters. However, compared to other seasons, significantly higher degrees of functional redundancy existed in the summer and autumn after ozone implementation (0.85 ± 0.01 and 0.86 ± 0.01, respectively). Overall, this work improves our understanding of the microbial ecology of full-scale BAC filters by providing a conceptual framework that characterizes bacterial biofilm assembly processes relevant to performance optimization of full-scale BAC filters.


Asunto(s)
Ozono , Purificación del Agua , Bacterias , Biopelículas , Carbón Orgánico
8.
Water Res ; 184: 116120, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726741

RESUMEN

The occurrence of harmful algal blooms dominated by toxic cyanobacteria has induced continuous loadings of algal organic matter (AOM) and toxins in drinking water treatment plants. However, the impact of AOM on the active biofilms and microbial community structures of biologically-active filtration (BAF), which directly affects the contaminant removal, is not well understood. In this study, we systematically examined the effects of AOM on BAF performance and bacterial biofilm formation over 240 days, tracing the removal of specific AOM components, a cyanotoxin [microcystin-LR (MC-LR)], and microbial community responses. The component analysis (excitation and emission matrix analysis) results for AOM revealed that terrestrial humic-like substances showed the highest removal among all the identified components and were strongly correlated to MC-LR removal. In addition, reduced empty bed contact time and deactivation of biofilms significantly decreased BAF performances for both AOM and MC-LR. The active biofilm, bacterial community structure, and mlrA gene (involved in microcystin degradation) abundance demonstrated that bacterial biofilm composition responded to AOM and MC-LR, in which Rhodocyclaceae, Saprospiraceae, and Comamonadaceae were dominant. In addition, MC-LR biodegradation appeared to be more active at the top than at the bottom layer in BAF. Overall, this study provides deeper insights into the role of biofilms and filter operation on the fate of AOM and MC-LR in BAF.


Asunto(s)
Cianobacterias , Purificación del Agua , Biopelículas , Filtración , Floraciones de Algas Nocivas , Microcistinas
9.
Chemosphere ; 246: 125745, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31927366

RESUMEN

There are increased concerns over the contributions of biofilms to disinfection byproduct (DBP) formation in engineered water systems (EWS). However, monitoring the biomolecular characteristics of biofilms to understand their impacts on DBP formation has been a great challenge as it requires complex analytical techniques. This study aimed to examine the applicability of fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC) to assess the chemical compositions and DBP formation of biofilms. Biofilms were collected from reactors grown on R2A media, as well as two drinking water-related organic substrates such as humic substances and algal organic matter. The chemical composition and formation of carbonaceous and nitrogenous DBPs of biofilms were continuously monitored every 21 days for 168 days and correlated with the derived EEM-PARAFAC components. Results indicated that all biofilm samples comprised mostly of protein-like components (∼90%), and to a lesser extent, humic-like components (∼10%). Strong correlations were generally found between tryptophan-like substances and the studied DBP formation (R2min ≥ 0.76, P < 0.05), indicating that they play a major role in producing biofilm-derived DBPs upon chlorination. Moreover, significant discrepancies between the chemical compositions and DBP formation of biofilms and their corresponding feed solutions were observed, likely due to biotransformation and biosorption processes. Overall, this work highlights that EEM-PARAFAC analysis is a promising tool to monitor the biomolecular characteristics of biofilm components and to predict the subsequent DBP formation in optimizing disinfection protocols for EWS.


Asunto(s)
Desinfectantes/análisis , Contaminantes Químicos del Agua/análisis , Biopelículas , Desinfección/métodos , Agua Potable/química , Análisis Factorial , Fluorescencia , Halogenación , Sustancias Húmicas/análisis , Nitrógeno/análisis , Espectrometría de Fluorescencia/métodos , Purificación del Agua/métodos
10.
Front Microbiol ; 10: 2258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649627

RESUMEN

Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R 2 = 11.6%), followed by shorebird host species (R 2 = 1.8%), and sampling year (R 2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.

11.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395635

RESUMEN

Campylobacter spp. are commensal organisms in avian species and are one of the leading causes of bacterial foodborne human diarrheal disease worldwide. We report the draft genome sequences of Campylobacter volucris, C. lari, and C. jejuni strains isolated from California gull (Larus californicus) excreta collected from a California beach.

12.
Water Res ; 158: 136-145, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026675

RESUMEN

Increased loading of algal organic matter (AOM) during harmful algal blooms not only burdens water treatment processes but also challenges safe drinking water delivery. While organic constituents promote biofilm growth in drinking water distribution systems (DWDS), the effects of AOM on biofilm formation in DWDS are not well understood. Herein, three parallel biofilm reactors were used to assess and compare how treated AOM- and humic substance (HS)-impacted bulk water, and R2A medium (a control) affect biofilm development for 168 days. The 16S rRNA gene sequencing analysis revealed that the bacterial communities in biofilms were clustered with the organic matter types in bulk water, where Family Comamonadaceae was the most dominant but showed different temporal dynamics depending on the organic matter characteristics in bulk water. Higher diversity was observed in the biofilms grown in AOM-impacted bulk water (BFAOM) than biofilms grown in HS-impacted (BFHS) and R2A-impacted bulk water (BFR2A) as the biofilms matured. In addition, some taxa (e.g., Rhodobacteraceae and Sphingomonadaceae) were enriched in BFAOM compared to BFHS and BFR2A. The biofilm image analysis results indicated that compared to BFHS, BFAOM and BFR2A had relatively thinner and heterogeneous physical structures with lower amounts of cell biomass, extracellular polymeric substances (EPS), and higher EPS protein/polysaccharide ratios. Overall, this study revealed how AOM- and HS-impacted bulk water shape the physiochemical and community structures of biofilms, which can provide insights into assessing biofilm-associated risks and optimizing disinfection practices for biofilm control in DWDS.


Asunto(s)
Agua Potable , Sustancias Húmicas , Biopelículas , Desinfección , ARN Ribosómico 16S
13.
Front Microbiol ; 9: 2544, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30416492

RESUMEN

Conventional biological nitrogen removal (BNR), comprised of nitrification and denitrification, is traditionally employed in wastewater treatment plants (WWTPs) to prevent eutrophication in receiving water bodies. More recently, the combination of selective ammonia to nitrite oxidation (nitritation) and autotrophic anaerobic ammonia oxidation (anammox), collectively termed deammonification, has also emerged as a possible energy- and cost-effective BNR alternative. Herein, we analyzed microbial diversity and functional potential within 13 BNR processes in the United States, Denmark, and Singapore operated with varying reactor configuration, design, and operational parameters. Using next-generation sequencing and metagenomics, gene-coding regions were aligned against a custom protein database expanded to include all published aerobic ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB), anaerobic ammonia oxidizing bacteria (AMX), and complete ammonia oxidizing bacteria (CMX). Overall contributions of these N-cycle bacteria to the total functional potential of each reactor was determined, as well as that of several organisms associated with denitrification and/or structural integrity of microbial aggregates (biofilm or granules). The potential for these engineered processes to foster a broad spectrum of microbial catabolic, anabolic, and carbon assimilation transformations was elucidated. Seeded sidestream DEMON® deammonification systems and single-stage nitritation-anammox moving bed biofilm reactors (MBBRs) and a mainstream Cleargreen reactor designed to enrich in AOB and AMX showed lower enrichment in AMX functionality than an enriched two-stage nitritation-anammox MBBR system treating mainstream wastewater. Conventional BNR systems in Singapore and the United States had distinct metagenomes, especially relating to AOB. A hydrocyclone process designed to recycle biomass granules for mainstream BNR contained almost identical structural and functional characteristics in the overflow, underflow, and inflow of mixed liquor (ALT) rather than the expected selective enrichment of specific nitrifying or AMX organisms. Inoculum used to seed a sidestream deammonification process unexpectedly contained <10% of total coding regions assigned to AMX. These results suggest the operating conditions of engineered bioprocesses shape the resident microbial structure and function far more than the bioprocess configuration itself. We also highlight the advantage of a systems- and metagenomics-based interrogation of both the microbial structure and potential function therein over targeting of individual populations or specific genes.

14.
J Water Health ; 16(5): 711-723, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30285953

RESUMEN

Intestinal enterococci indicate the fecal contamination of bathing waters. This study defines the performance characteristics of the reference method ISO 7899-2:2000 with water samples collected from inland and coastal bathing areas in Finland. From a total of 341 bacterial isolates grown on Slanetz and Bartley medium, 63.6% were confirmed as intestinal enterococci on bile aesculin agar. The partial 16S rRNA gene sequences showed that Enterococcus faecium and Enterococcus faecalis clades accounted for 93.1% of the confirmed isolates. The range of the false positive and false negative rate of the ISO 7899-2 was 0.0-18.5% and 5.6-57.1%, respectively, being affected by the presumptive colony count on the membrane. The analysis of multiple sample volumes is proposed to reach 10-100 colonies per membrane when 47 mm diameter membranes are used to prevent overestimation of low counts and underestimation of the high counts.


Asunto(s)
Enterococcus , Monitoreo del Ambiente/métodos , Microbiología del Agua/normas , Enterococcus faecium , Finlandia , ARN Ribosómico 16S , Calidad del Agua/normas
15.
Bioresour Technol ; 268: 128-138, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30077169

RESUMEN

The Integrated Fixed-Film Activated Sludge (IFAS) process is an advanced biological wastewater treatment process that integrates biofilm carriers within conventional activated sludge to uncouple the sludge retention time for nitrifiers and heterotrophic bacteria. In this study, we incorporated microalgae into the IFAS configuration for photo-oxygenation and evaluated the symbiotic reaction between microalgae and bacteria for both suspended solids and IFAS biofilm media. In a sequencing batch mode, the microalgae-IFAS system removed more than 99% ammonia and 51% phosphorous without the need for mechanical aeration. Biofilm microprofiles revealed localized photo-oxygenation by the algal biofilm and nitrification by nitrifiers on the IFAS media. Genetic sequencing showed that the addition of microalgae to the IFAS system promoted significant changes in the bacterial community structure and altered metabolic activity of several bacterial groups. Overall, this research represents a novel strategy for reducing energy consumption while meeting stringent effluent standards using a hybrid symbiotic microalgae-IFAS technology.


Asunto(s)
Biopelículas , Microalgas , Aguas del Alcantarillado , Amoníaco , Reactores Biológicos , Nitrificación , Nitrógeno , Aguas Residuales
16.
J Hazard Mater ; 352: 111-120, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29602070

RESUMEN

Treatability experiments were conducted to determine the biodegradation of diluted bitumen (dilbit) at 5 and 25 °C for 72 and 60 days, respectively. Microbial consortia obtained from the Kalamazoo River Enbridge Energy spill site were enriched on dilbit at both 5 (cryo) and 25 (meso) ºC. On every sampling day, triplicates were sacrificed and residual hydrocarbon concentrations (alkanes and polycyclic aromatic hydrocarbons) were determined by GCMS/MS. The composition and relative abundance of different bacterial groups were identified by 16S rRNA gene sequencing analysis. While some physicochemical differences were observed between the two dilbits, their biodegradation profiles were similar. The rates and extent of degradation were greater at 25 °C. Both consortia metabolized 99.9% of alkanes; however, the meso consortium was more effective at removing aromatics than the cryo consortium (97.5 vs 70%). Known hydrocarbon-degrading bacteria were present in both consortia (Pseudomonas, Rhodococcus, Hydrogenophaga, Parvibaculum, Arthrobacter, Acidovorax), although their relative abundances depended on the temperatures at which they were enriched. Regardless of the dilbit type, the microbial community structure significantly changed as a response to the diminishing hydrocarbon load. Our results demonstrate that dilbit can be effectively degraded by autochthonous microbial consortia from sites with recent exposure to dilbit contamination.


Asunto(s)
Hidrocarburos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Agua Dulce , Sitios de Residuos Peligrosos , Michigan , Consorcios Microbianos , ARN Ribosómico 16S/genética , Temperatura
17.
Environ Sci Technol Lett ; 5(2): 110-116, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31338378

RESUMEN

Complete ammonia oxidation (comammox) to nitrate by certain Nitrospira-lineage bacteria (CMX) could contribute to overall nitrogen cycling in engineered biological nitrogen removal (BNR) processes in addition to the more well-documented nitrogen transformations by ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and anaerobic ammonia-oxidizing (anammox) bacteria (AMX). A metagenomic survey was conducted to quantify the presence and elucidate the potential functionality of CMX in 16 full-scale BNR configurations treating mainstream or sidestream wastewater. CMX proposed to date were combined with previously published AOB, NOB, and AMX genomes to create an expanded database for alignment of metagenomic reads. CMX-assigned metagenomic reads accounted for between 0.28 and 0.64% of total coding DNA sequences in all BNR configurations. Phylogenetic analysis of key nitrification functional genes amoA, encoding the α-subunit of ammonia monooxygenase, haoB, encoding the ß-subunit of hydroxylamine oxidoreductase, and nxrB, encoding the ß-subunit of nitrite oxidoreductase, confirmed that each BNR system contained coding regions for production of these enzymes by CMX specifically. Ultimately, the ubiquitous presence of CMX bacteria and metabolic functionality in such diverse system configurations emphasizes the need to translate novel bacterial transformations to engineered biological process interrogation, operation, and design.

18.
Sci Total Environ ; 615: 123-130, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28964987

RESUMEN

Contamination of recreational beaches due to fecal waste from gulls complicates beach monitoring and may pose a risk to public health. Gulls that feed at human waste sites may ingest human fecal microorganisms associated with that waste. If these gulls also visit beaches, they may serve as vectors, transporting fecal microorganisms to the beach where they may subsequently contaminate sand and water. In this study, samples collected from landfills, treated wastewater storage lagoons, and public beaches demonstrated a spatial and temporal overlap of markers for gull and human-associated microorganisms. In addition, markers for gull, fecal indicator bacteria, and the human-associated marker, HF183, were detected in gull feces and cloacae samples. Further, HF183 was detected in cloacae samples from gulls that were documented by radio-telemetry traveling between human waste sites and public beaches. This study highlights the potential for gulls that visit human waste sites to disperse human-associated microorganisms in the beach landscape.


Asunto(s)
Bacterias/aislamiento & purificación , Playas , Charadriiformes/microbiología , Monitoreo del Ambiente , Microbiología del Agua , Animales , Heces/microbiología , Humanos
19.
Water Res ; 127: 230-238, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29055828

RESUMEN

This study assessed the conductivity of a Geobacter-enriched biofilm anode in a microbial electrochemical cell (MxC) equipped with two gold anodes (25 mM acetate medium), as different proton gradients were built throughout the biofilm. There was no pH gradient across the biofilm anode at 100 mM phosphate buffer (current density 2.38 A/m2) and biofilm conductivity (Kbio) was as high as 0.87 mS/cm. In comparison, an inner biofilm became acidic at 2.5 mM phosphate buffer in which dead cells were accumulated at ∼80 µm of the inner biofilm anode. At this low phosphate buffer, Kbio significantly decreased by 0.27 mS/cm, together with declined current density of 0.64 A/m2. This work demonstrates that biofilm conductivity depends on the composition of live and dead cells in the conductive biofilm anode.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas , Electrodos , Tampones (Química) , Conductividad Eléctrica , Geobacter/química , Oro , Concentración de Iones de Hidrógeno , Microscopía Confocal , Fosfatos/química , Protones
20.
mSystems ; 2(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28905001

RESUMEN

The recently discovered comammox bacteria have the potential to completely oxidize ammonia to nitrate. These microorganisms are part of the Nitrospira genus and are present in a variety of environments, including biological nutrient removal (BNR) systems. However, the physiological traits within and between comammox and nitrite-oxidizing bacterium (NOB)-like Nitrospira species have not been analyzed in these ecosystems. In this study, we identified Nitrospira strains dominating the nitrifying community of a sequencing batch reactor (SBR) performing BNR under microaerobic conditions. We recovered metagenome-derived draft genomes from two Nitrospira strains: (i) Nitrospira sp. strain UW-LDO-01, a comammox-like organism classified as "Candidatus Nitrospira nitrosa," and (ii) Nitrospira sp. strain UW-LDO-02, a nitrite-oxidizing strain belonging to the Nitrospira defluvii species. A comparative genomic analysis of these strains with other Nitrospira-like genomes identified genomic differences in "Ca. Nitrospira nitrosa" mainly attributed to each strain's niche adaptation. Traits associated with energy metabolism also differentiate comammox from NOB-like genomes. We also identified several transcriptionally regulated adaptive traits, including stress tolerance, biofilm formation, and microaerobic metabolism, which might explain survival of Nitrospira under multiple environmental conditions. Overall, our analysis expanded our understanding of the genetic functional features of "Ca. Nitrospira nitrosa" and identified genomic traits that further illuminate the phylogenetic diversity and metabolic plasticity of the Nitrospira genus. IMPORTANCENitrospira-like bacteria are among the most diverse and widespread nitrifiers in natural ecosystems and the dominant nitrite oxidizers in wastewater treatment plants (WWTPs). The recent discovery of comammox-like Nitrospira strains, capable of complete oxidation of ammonia to nitrate, raises new questions about specific traits responsible for the functional versatility and adaptation of this genus to a variety of environments. The availability of new Nitrospira genome sequences from both nitrite-oxidizing and comammox bacteria offers a way to analyze traits in different Nitrospira functional groups. Our comparative genomics analysis provided new insights into the adaptation of Nitrospira strains to specific lifestyles and environmental niches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA