Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Clin Invest ; 134(7)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38290087

In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Reexpression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.


Glycogen Synthase , Liver Glycogen , Mechanistic Target of Rapamycin Complex 1 , Protein Phosphatase 1 , Animals , Humans , Mice , Glycogen/genetics , Glycogen/metabolism , Glycogen Synthase/metabolism , Insulin/metabolism , Liver/metabolism , Liver Glycogen/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Phosphatase 1/metabolism , Postprandial Period
2.
Compr Physiol ; 13(3): 4785-4809, 2023 06 26.
Article En | MEDLINE | ID: mdl-37358513

The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.


Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Insulin/metabolism , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Triglycerides/metabolism , Glycogen/metabolism , Homeostasis
3.
iScience ; 25(6): 104410, 2022 Jun 17.
Article En | MEDLINE | ID: mdl-35663017

The insulin responsive Akt and FoxO1 signaling axis is a key regulator of the hepatic transcriptional response to nutrient intake. Here, we used global run-on sequencing (GRO-seq) to measure the nascent transcriptional response to fasting and refeeding as well as define the specific role of hepatic Akt and FoxO1 signaling in mediating this response. We identified 599 feeding-regulated transcripts, as well as over 6,000 eRNAs, and mapped their dependency on Akt and FoxO1 signaling. Further, we identified several feeding-regulated lncRNAs, including the lncRNA Gm11967, whose expression was dependent upon the liver Akt-FoxO1 axis. Restoring Gm11967 expression in mice lacking liver Akt improved insulin sensitivity and induced glucokinase protein expression, indicating that Akt-dependent control of Gm11967 contributes to the translational control of glucokinase. More broadly, we have generated a unique genome-wide dataset that defines the feeding and Akt/FoxO1-dependent transcriptional changes in response to nutrient availability.

4.
Cell Mol Gastroenterol Hepatol ; 13(6): 1625-1647, 2022.
Article En | MEDLINE | ID: mdl-35240344

BACKGROUND & AIMS: Dysregulation of liver lipid metabolism is associated with the development and progression of nonalcoholic fatty liver disease, a spectrum of liver diseases including nonalcoholic steatohepatitis (NASH). In the liver, insulin controls lipid homeostasis by increasing triglyceride (TAG) synthesis, suppressing fatty acid oxidation, and enhancing TAG export via very low-density lipoproteins. Downstream of insulin signaling, the mechanistic target of rapamycin complex 1 (mTORC1), is a key regulator of lipid metabolism. Here, we define the role of hepatic mTORC1 activity in mouse models of NASH and investigate the mTORC1-dependent mechanisms responsible for protection against liver damage in NASH. METHODS: Utilizing 2 rodent NASH-promoting diets, we demonstrate that hepatic mTORC1 activity was reduced in mice with NASH, whereas under conditions of insulin resistance and benign fatty liver, mTORC1 activity was elevated. To test the beneficial effects of hepatic mTORC1 activation in mouse models of NASH, we employed an acute, liver-specific knockout model of TSC1 (L-TSC-KO), a negative regulator of mTORC1. RESULTS: L-TSC-KO mice are protected from and have improved markers of NASH including reduced steatosis, decreased circulating transaminases, and reduced expression of inflammation and fibrosis genes. Mechanistically, protection from hepatic inflammation and fibrosis by constitutive mTORC1 activity occurred via promotion of the phosphatidylcholine synthesizing enzyme, CCTα, and enhanced very low-density lipoprotein-triglyceride export. Additionally, activation of mTORC1 protected from hepatic steatosis via negative feedback of the mTORC2-AKT-FOXO-SREBP1c lipogenesis axis. CONCLUSIONS: Collectively, this study identifies a protective role for liver mTORC1 signaling in the initiation and progression of NASH in mice via dual control of lipid export and synthesis.


Non-alcoholic Fatty Liver Disease , Animals , Fibrosis , Inflammation , Insulin/metabolism , Lipogenesis , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
5.
Endocrinology ; 163(5)2022 05 01.
Article En | MEDLINE | ID: mdl-35303074

The hepatic transcription factor forkhead box O1 (FOXO1) is a critical regulator of hepatic and systemic insulin sensitivity. Previous work by our group and others demonstrated that genetic inhibition of FOXO1 improves insulin sensitivity both in genetic and dietary mouse models of metabolic disease. Mechanistically, this is due in part to cell nonautonomous control of adipose tissue insulin sensitivity. However, the mechanisms mediating this liver-adipose tissue crosstalk remain ill defined. One candidate hepatokine controlled by hepatic FOXO1 is fibroblast growth factor 21 (FGF21). Preclinical and clinical studies have explored the potential of pharmacological FGF21 as an antiobesity and antidiabetic therapy. In this manuscript, we performed acute loss-of-function experiments to determine the role of hepatocyte-derived FGF21 in glucose homeostasis and insulin tolerance both in control and mice lacking hepatic insulin signaling. Surprisingly, acute deletion of FGF21 did not alter glucose tolerance, insulin tolerance, or adipocyte lipolysis in either liver-specific FGF21KO mice or mice lacking hepatic AKT-FOXO1-FGF21, suggesting a permissive role for endogenous FGF21 in the regulation of systemic glucose homeostasis and insulin tolerance in mice. In addition, these data indicate that liver FOXO1 controls glucose homeostasis independently of liver-derived FGF21.


Insulin Resistance , Lipolysis , Animals , Fibroblast Growth Factors/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Glucose/metabolism , Homeostasis/genetics , Insulin/metabolism , Insulin Resistance/genetics , Lipolysis/genetics , Liver/metabolism , Mice , Mice, Knockout
6.
Chembiochem ; 21(3): 346-352, 2020 02 03.
Article En | MEDLINE | ID: mdl-31265209

Protein C-terminal hydrazides are useful for bioconjugation and construction of proteins from multiple fragments through native chemical ligation. To generate C-terminal hydrazides in proteins, an efficient intein-based preparation method has been developed by using thiols and hydrazine to accelerate the formation of the transient thioester intermediate and subsequent hydrazinolysis. This approach not only increases the yield, but also improves biocompatibility. The scope of the method has been expanded by employing Pyrococcus horikoshii RadA split intein, which can accommodate a broad range of extein residues before the site of cleavage. The use of split RadA minimizes premature intein N cleavage in vivo and offers control over the initiation of the intein N cleavage reaction. It is expected that this versatile preparation method will expand the utilization of protein C-terminal hydrazides in protein preparation and modification.


Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Hydrazines/metabolism , Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Hydrazines/chemistry , Inteins , Pyrococcus horikoshii/chemistry , Pyrococcus horikoshii/metabolism
7.
Cell Mol Gastroenterol Hepatol ; 7(2): 447-456, 2019.
Article En | MEDLINE | ID: mdl-30739869

Insulin resistance is associated with numerous metabolic disorders, such as obesity and type II diabetes, that currently plague our society. Although insulin normally promotes anabolic metabolism in the liver by increasing glucose consumption and lipid synthesis, insulin-resistant individuals fail to inhibit hepatic glucose production and paradoxically have increased liver lipid synthesis, leading to hyperglycemia and hypertriglyceridemia. Here, we detail the intrahepatic and extrahepatic pathways mediating insulin's control of glucose and lipid metabolism. We propose that the interplay between both of these pathways controls insulin signaling and that mis-regulation between the 2 results in the paradoxic effects seen in the insulin-resistant liver instead of the commonly proposed deficiencies in particular branches of only the direct hepatic pathway.


Insulin Resistance , Liver/metabolism , Animals , Humans , Insulin/metabolism , Lipid Metabolism , Models, Biological , Signal Transduction
...