Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 450, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741146

RESUMEN

BACKGROUND: Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERß, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS: The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS: After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS: Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.


Asunto(s)
Movimiento Celular , Estetrol , Regulación Neoplásica de la Expresión Génica , Inhibidor 2 de Activador Plasminogénico , Receptores Acoplados a Proteínas G , Transducción de Señal , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Estetrol/farmacología , Estetrol/metabolismo , Invasividad Neoplásica , Inhibidor 2 de Activador Plasminogénico/metabolismo , Unión Proteica/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética
2.
Cell Death Discov ; 9(1): 353, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749101

RESUMEN

The G protein-coupled estrogen receptor (GPER) mediates estrogen action in different pathophysiological conditions, including cancer. GPER expression and signaling have been found to join in the progression of triple-negative breast cancer (TNBC), even though controversial data have been reported. In present study, we aimed at providing new mechanistic and biological discoveries knocking out (KO) GPER expression by CRISPR/Cas9 technology in MDA-MB-231 TNBC cells. GPER KO whole transcriptome respect to wild type (WT) MDA-MB-231 cells was determined through total RNA sequencing (RNA-Seq) and gene ontology (GO) enrichment analysis. We ascertained that anti-proliferative and pro-apoptotic gene signatures characterize GPER KO MDA-MB-231 cells. Thereafter, we determined that these cells exhibit a reduced proliferative, clonogenic and self-renewal potential along with an increased mitochondria-dependent apoptosis phenotype. In addition, we recognized that decreased cAMP levels trigger the JNK/c-Jun/p53/Noxa axis, which in turn orchestrates the pro-apoptotic effects observed in GPER KO cells. In accordance with these data, survival analyses in TNBC patients of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset indicated that high Noxa expression correlates with improved outcomes in TNBC patients. Furthermore, we demonstrated that GPER KO in TNBC cells impairs the expression and secretion of the well-acknowledged GPER target gene named CTGF, thus resulting in the inhibition of migratory effects in cancer-associated fibroblasts (CAFs). Overall, the present study provides novel mechanistic and biological insights on GPER KO in TNBC cells suggesting that GPER may be considered as a valuable target in comprehensive therapeutic approaches halting TNBC progression.

3.
Sci Rep ; 13(1): 1326, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693877

RESUMEN

The synthetic peptide ERα17p (sequence: PLMIKRSKKNSLALSLT), which corresponds to the 295-311 region of the human estrogen receptor α (ERα), induces apoptosis in breast cancer cells. In mice and at low doses, it promotes not only the decrease of the size of xenografted triple-negative human breast tumors, but also anti-inflammatory and anti-nociceptive effects. Recently, we have shown that these effects were due to its interaction with the seven-transmembrane G protein-coupled estrogen receptor GPER. Following modeling studies, the C-terminus of this peptide (sequence: NSLALSLT) remains compacted at the entrance of the GPER ligand-binding pocket, whereas its N-terminus (sequence: PLMI) engulfs in the depth of the same pocket. Thus, we have hypothesized that the PLMI motif could support the pharmacological actions of ERα17p. Here, we show that the PLMI peptide is, indeed, responsible for the GPER-dependent antiproliferative and anti-nociceptive effects of ERα17p. By using different biophysical approaches, we demonstrate that the NSLALSLT part of ERα17p is responsible for aggregation. Overall, the tetrapeptide PLMI, which supports the action of the parent peptide ERα17p, should be considered as a hit for the synthesis of new GPER modulators with dual antiproliferative and anti-nociceptive actions. This study highlights also the interest to modulate GPER for the control of pain.


Asunto(s)
Receptor alfa de Estrógeno , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos , Péptidos , Receptores Acoplados a Proteínas G , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
4.
Cells ; 11(15)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35954247

RESUMEN

Advanced glycation end products (AGEs) and the cognate receptor, named RAGE, are involved in metabolic disorders characterized by hyperglycemia, type 2 diabetes mellitus (T2DM) and obesity. Moreover, the AGEs/RAGE transduction pathway prompts a dysfunctional interaction between breast cancer cells and tumor stroma toward the acquisition of malignant features. However, the action of the AGEs/RAGE axis in the main players of the tumor microenvironment, named breast cancer-associated fibroblasts (CAFs), remains to be fully explored. In the present study, by chemokine array, we first assessed that interleukin-8 (IL-8) is the most up-regulated pro-inflammatory chemokine upon AGEs/RAGE activation in primary CAFs, obtained from breast tumors. Thereafter, we ascertained that the AGEs/RAGE signaling promotes a network cascade in CAFs, leading to the c-Fos-dependent regulation of IL-8. Next, using a conditioned medium from AGEs-exposed CAFs, we determined that IL-8/CXCR1/2 paracrine activation induces the acquisition of migratory and invasive features in MDA-MB-231 breast cancer cells. Altogether, our data provide new insights on the involvement of IL-8 in the AGEs/RAGE transduction pathway among the intricate connections linking breast cancer cells to the surrounding stroma. Hence, our findings may pave the way for further investigations to define the role of IL-8 as useful target for the better management of breast cancer patients exhibiting metabolic disorders.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Diabetes Mellitus Tipo 2 , Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Interleucina-8/metabolismo , Transducción de Señal , Microambiente Tumoral
5.
J Transl Med ; 20(1): 263, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672854

RESUMEN

BACKGROUND: Metabolic disorders are associated with increased incidence, aggressive phenotype and poor outcome of breast cancer (BC) patients. For instance, hyperinsulinemia is an independent risk factor for BC and the insulin/insulin receptor (IR) axis is involved in BC growth and metastasis. Of note, the anti-diabetic metformin may be considered in comprehensive therapeutic approaches in BC on the basis of its antiproliferative effects obtained in diverse pre-clinical and clinical studies. METHODS: Bioinformatics analysis were performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project. The naturally immortalized BC cell line, named BCAHC-1, as well as cancer-associated fibroblasts (CAFs) derived from BC patients were used as model systems. In order to identify further mechanisms that characterize the anticancer action of metformin in BC, we performed gene expression and promoter studies as well as western blotting experiments. Moreover, cell cycle analysis, colony and spheroid formation, actin cytoskeleton reorganization, cell migration and matrigel drops evasion assays were carried out to provide novel insights on the anticancer properties of metformin. RESULTS: We first assessed that elevated expression and activation of IR correlate with a worse prognostic outcome in estrogen receptor (ER)-positive BC. Thereafter, we established that metformin inhibits the insulin/IR-mediated activation of transduction pathways, gene changes and proliferative responses in BCAHC-1 cells. Then, we found that metformin interferes with the insulin-induced expression of the metastatic gene CXC chemokine receptor 4 (CXCR4), which we found to be associated with poor disease-free survival in BC patients exhibiting high levels of IR. Next, we ascertained that metformin prevents a motile phenotype of BCAHC-1 cells triggered by the paracrine liaison between tumor cells and CAFs upon insulin activated CXCL12/CXCR4 axis. CONCLUSIONS: Our findings provide novel mechanistic insights regarding the anti-proliferative and anti-migratory effects of metformin in both BC cells and important components of the tumor microenvironment like CAFs. Further investigations are warranted to corroborate the anticancer action of metformin on the tumor mass toward the assessment of more comprehensive strategies halting BC progression, in particular in patients exhibiting metabolic disorders and altered insulin/IR functions.


Asunto(s)
Neoplasias de la Mama , Metformina , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Insulina/farmacología , Insulina/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Receptores CXCR4/metabolismo , Transducción de Señal , Microambiente Tumoral
6.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946884

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive breast tumor subtype characterized by poor clinical outcome. In recent years, numerous advancements have been made to better understand the biological landscape of TNBC, though appropriate targets still remain to be determined. In the present study, we have determined that the expression levels of FGF2 and S100A4 are higher in TNBC with respect to non-TNBC patients when analyzing "The Invasive Breast Cancer Cohort of The Cancer Genome Atlas" (TCGA) dataset. In addition, we have found that the gene expression of FGF2 is positively correlated with S100A4 in TNBC samples. Performing quantitative PCR, Western blot, CRISPR/Cas9 genome editing, promoter studies, immunofluorescence analysis, subcellular fractionation studies, and ChIP assays, we have also demonstrated that FGF2 induces in TNBC cells the upregulation and secretion of S100A4 via FGFR1, along with the ERK1/2-AKT-c-Rel transduction signaling. Using conditioned medium from TNBC cells stimulated with FGF2, we have also ascertained that the paracrine activation of the S100A4/RAGE pathway triggers angiogenic effects in vascular endothelial cells (HUVECs) and promotes the migration of cancer-associated fibroblasts (CAFs). Collectively, our data provide novel insights into the action of the FGF2/FGFR1 axis through S100A4 toward stimulatory effects elicited in TNBC cells.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/fisiología , Proteínas de Neoplasias/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Proteína de Unión al Calcio S100A4/fisiología , Transducción de Señal/fisiología , Neoplasias de la Mama Triple Negativas/fisiopatología , Antígenos de Neoplasias/fisiología , Movimiento Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Quinasas Activadas por Mitógenos/fisiología , Neovascularización Patológica/fisiopatología , Comunicación Paracrina , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-rel/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Células Tumorales Cultivadas
7.
Cancers (Basel) ; 12(10)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33081025

RESUMEN

One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.

8.
Cells ; 8(3)2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866584

RESUMEN

The FGF2/FGFR1 paracrine loop is involved in the cross-talk between breast cancer cells and components of the tumor stroma as cancer-associated fibroblasts (CAFs). By quantitative PCR (qPCR), western blot, immunofluorescence analysis, ELISA and ChIP assays, we demonstrated that 17ß-estradiol (E2) and the G protein estrogen receptor (GPER) agonist G-1 induce the up-regulation and secretion of FGF2 via GPER together with the EGFR/ERK/c-fos/AP-1 signaling cascade in (ER)-negative primary CAFs. Evaluating the genetic alterations from METABRIC and TCGA datasets, we then assessed that FGFR1 is the most frequently amplified FGFRs family member and its amplification/expression associates with shorter survival rates in breast cancer patients. Therefore, in order to assess the functional FGF2/FGFR1 interplay between CAFs and breast cancer cells, we generated the FGFR1-knockout MDA-MB-231 cells using CRISPR/Cas9 genome editing strategy. Using conditioned medium from estrogen-stimulated CAFs, we established that the activation of FGF2/FGFR1 paracrine signaling triggers the expression of the connective tissue growth factor (CTGF), leading to the migration and invasion of MDA-MB-231 cells. Our findings shed new light on the role elicited by estrogens through GPER in the activation of the FGF2/FGFR1 signaling. Moreover, our findings may identify further biological targets that could be considered in innovative combination strategies halting breast cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/metabolismo , Progresión de la Enfermedad , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Comunicación Paracrina , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Medios de Cultivo Condicionados/farmacología , Ciclopentanos/farmacología , Estradiol/farmacología , Femenino , Humanos , Invasividad Neoplásica , Comunicación Paracrina/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Quinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
J Exp Clin Cancer Res ; 38(1): 58, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728047

RESUMEN

BACKGROUND: Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells. METHODS: Publicly available large-scale database and patient data sets derived from "The Cancer Genome Atlas" (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA. RESULTS: We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation. CONCLUSIONS: The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.


Asunto(s)
Estrógenos/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Movimiento Celular , Bases de Datos Genéticas , Femenino , Adhesiones Focales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Tasa de Supervivencia , Neoplasias de la Mama Triple Negativas/genética
10.
Cells ; 7(11)2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30423928

RESUMEN

Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17ß-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types. By METABRIC database analysis we ascertained that miR-338-3p positively correlates with overall survival in breast cancer patients, according to previous studies showing that miR-338-3p may suppress the growth and invasion of different cancer cells. Well-fitting with these data, a miR-338-3p mimic sequence decreased and a miR-338-3p inhibitor sequence rescued the expression of genes and the proliferative effects induced by E2 through GPER in SkBr3 cancer cells and CAFs. Altogether, our results provide novel evidence on the molecular mechanisms by which E2 may regulate miR-338-3p toward breast cancer progression.

11.
Nat Commun ; 9(1): 3327, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127402

RESUMEN

Patients diagnosed with lung squamous cell carcinoma (LUSC) have limited targeted therapies. We report here the identification and characterisation of BCL11A, as a LUSC oncogene. Analysis of cancer genomics datasets revealed BCL11A to be upregulated in LUSC but not in lung adenocarcinoma (LUAD). Experimentally we demonstrate that non-physiological levels of BCL11A in vitro and in vivo promote squamous-like phenotypes, while its knockdown abolishes xenograft tumour formation. At the molecular level we found that BCL11A is transcriptionally regulated by SOX2 and is required for its oncogenic functions. Furthermore, we show that BCL11A and SOX2 regulate the expression of several transcription factors, including SETD8. We demonstrate that shRNA-mediated or pharmacological inhibition of SETD8 selectively inhibits LUSC growth. Collectively, our study indicates that BCL11A is integral to LUSC pathology and highlights the disruption of the BCL11A-SOX2 transcriptional programme as a novel candidate for drug development.


Asunto(s)
Carcinoma de Células Escamosas/genética , Proteínas Portadoras/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Sitios Genéticos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Oncogenes , Organoides/patología , Unión Proteica , Proteínas Represoras
12.
J Exp Clin Cancer Res ; 37(1): 94, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29716623

RESUMEN

BACKGROUND: MicroRNA (miRNAs) are non-coding small RNA molecules that regulate gene expression by inhibiting the translation of target mRNAs. Among several dysregulated miRNAs in human cancer, the up-regulation of miR-221 has been associated with development of a variety of hematologic and solid malignancies. In this study, we investigated the involvement of miR-221 in breast cancer. METHODS: TaqMan microRNA assay was used to detect the miR-221 levels in normal cells and in MDA-MB 231 and SkBr3 breast cancer cells as well as in main players of the tumor microenvironment, namely cancer-associated fibroblasts (CAFs). miR-221 mimic sequence and locked nucleic acid (LNA)-i-miR-221 construct were used to induce or inhibit, respectively, the miR-221 expression in cells used. Quantitative PCR and western blotting analysis were performed to evaluate the levels of the miR-221 target gene A20 (TNFAIP3), as well as the member of the NF-kB complex namely c-Rel and the connective tissue growth factor (CTGF). Chromatin immunoprecipitation (ChIP) assay was performed to ascertain the recruitment of c-Rel to the CTFG promoter. Finally, the cell growth and migration in the presence of LNA-i-miR-221 or silencing c-Rel and CTGF by specific short hairpin were assessed by cell count, colony formation and boyden chambers assays. Statistical analysis was performed by ANOVA. RESULTS: We first demonstrated that LNA-i-miR-221 inhibits both endogenous and ectopic expression of miR-221 in our experimental models. Next, we found that the A20 down-regulation, as well as the up-regulation of c-Rel induced by miR-221 were no longer evident using LNA-i-miR-221. Moreover, we established that the miR-221 dependent recruitment of c-Rel to the NF-kB binding site located within the CTGF promoter region is prevented by using LNA-i-miR-221. Furthermore, we determined that the up-regulation of CTGF mRNA and protein levels by miR-221 is no longer evident using LNA-i-miR221 and silencing c-Rel. Finally, we assessed that cell growth and migration induced by miR-221 in MDA-MB 231 and SkBr3 breast cancer cells as well as in CAFs are abolished by LNAi-miR-221 and silencing c-Rel or CTGF. CONCLUSIONS: Overall, these data provide novel insights into the stimulatory action of miR-221 in breast cancer cells and CAFs, suggesting that its inhibition may be considered toward targeted therapeutic approaches in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Fibroblastos/metabolismo , MicroARNs/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Transducción de Señal , Transfección
13.
Mol Carcinog ; 56(2): 580-593, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27341075

RESUMEN

Zinc (Zn) is an essential trace mineral that contributes to the regulation of several cellular functions; however, it may be also implicated in the progression of breast cancer through different mechanisms. It has been largely reported that the classical estrogen receptor (ER), as well as the G protein estrogen receptor (GPER, previously known as GPR30) can exert a main role in the development of breast tumors. In the present study, we demonstrate that zinc chloride (ZnCl2 ) involves GPER in the activation of insulin-like growth factor receptor I (IGF-IR)/epidermal growth factor receptor (EGFR)-mediated signaling, which in turn triggers downstream pathways like ERK and AKT in breast cancer cells, and main components of the tumor microenvironment namely cancer-associated fibroblasts (CAFs). Further corroborating these findings, ZnCl2 stimulates a functional crosstalk of GPER with IGF-IR and EGFR toward the transcription of diverse GPER target genes. Then, we show that GPER contributes to the stimulatory effects induced by ZnCl2 on cell-cycle progression, proliferation, and migration of breast cancer cells as well as migration of CAFs. Together, our data provide novel insights into the molecular mechanisms through which zinc may exert stimulatory effects in breast cancer cells and CAFs toward tumor progression. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fibroblastos Asociados al Cáncer/patología , Cloruros/metabolismo , Receptores ErbB/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Somatomedina/metabolismo , Transducción de Señal , Compuestos de Zinc/metabolismo , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Femenino , Humanos
14.
Oncotarget ; 7(33): 52710-52728, 2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27384677

RESUMEN

Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies.


Asunto(s)
Receptor con Dominio Discoidina 1/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Receptor Cross-Talk/efectos de los fármacos , Receptor IGF Tipo 1/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células A549 , Línea Celular Tumoral , Receptor con Dominio Discoidina 1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma/patología , Interferencia de ARN , Receptor IGF Tipo 1/genética , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Imagen de Lapso de Tiempo/métodos
15.
AAPS J ; 18(1): 41-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26573009

RESUMEN

Estrogens influence multiple physiological processes and are implicated in many diseases as well. Cellular responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERß, which act as ligand-activated transcription factors. Recently, a member of the G protein-coupled receptor (GPCR) superfamily, namely GPER/GPR30, has been identified as a further mediator of estrogen signalling in different pathophysiological conditions, including cancer. Today, computational methods are commonly used in all areas of health science research. Among these methods, virtual ligand screening has become an established technique for hit discovery and optimization. The absence of an established three-dimensional structure of GPER promoted studies of structure-based drug design in order to build reliable molecular models of this receptor. Here, we discuss the results obtained through the structure-based virtual ligand screening for GPER, which allowed the identification and synthesis of different selective agonist and antagonist moieties. These compounds led significant advances in our understanding of the GPER function at the cellular, tissue, and organismal levels. In particular, selective GPER ligands were critical toward the evaluation of the role elicited by this receptor in several pathophysiological conditions, including cancer. Considering that structure-based approaches are fundamental in drug discovery, future research breakthroughs with the aid of computer-aided molecular design and chemo-bioinformatics could generate a new class of drugs that, acting through GPER, would be useful in a variety of diseases as well as in innovative anticancer strategies.


Asunto(s)
Descubrimiento de Drogas/métodos , Sustancias Macromoleculares/química , Simulación del Acoplamiento Molecular/métodos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Biología Computacional , Humanos , Relación Estructura-Actividad
16.
Oncotarget ; 7(1): 94-111, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26646587

RESUMEN

Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer.


Asunto(s)
Aldosterona/farmacología , Células Endoteliales/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Endoteliales/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Immunoblotting , Microscopía Fluorescente , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Imagen de Lapso de Tiempo/métodos
17.
Oncotarget ; 6(33): 34158-77, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26415222

RESUMEN

Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression.


Asunto(s)
Sulfato de Cobre/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Patológica/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Western Blotting , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Transcriptoma
18.
Dis Model Mech ; 8(10): 1237-46, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26183213

RESUMEN

Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERß. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells.


Asunto(s)
Modelos Biológicos , Modelos Moleculares , Pirroles/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Bioensayo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Humanos , Ligandos , Neoplasias/patología , Pirroles/química , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Xenopus
19.
Oncotarget ; 6(18): 16573-87, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26030000

RESUMEN

MicroRNAs (miRNAs) are small non coding RNA molecules that play a crucial role in several pathophysiological conditions, including cancer. The stimulation of hormone-sensitive tumors by estrogens are mediated by estrogen receptor (ER)α and G protein estrogen receptor (GPER). Previous studies have reported that ERα regulates miRNA expression, while this ability of GPER remains to be elucidated. Here, we demonstrate that in SkBr3 breast cancer and HepG2 hepatocarcinoma cells, 17ß-estradiol (E2) and the selective GPER ligand G-1 induce miR144 expression through GPER and the involvement of the PI3K/ERK1/2/Elk1 transduction pathway. Moreover, we show that E2 and G-1 down-regulate through miR144 the onco-suppressor Runx1 and increase cell cycle progression. The capability of E2 and G-1 in triggering the induction of miR144 and the down-regulation of Runx1 was also confirmed in cancer-associated fibroblasts (CAFs) that are main components of the tumor microenvironment driving cancer progression. Further confirming these results, Runx1 protein levels were found decreased in tumor xenografts upon G-1 treatment. On the basis of our findings miR144 and Runx1 may be included among the oncotargets of GPER action. Moreover, the present data provide new insights regarding the ability of estrogens to trigger the GPER/miR144/Runx1 transduction pathway toward the stimulation of cancer progression.


Asunto(s)
Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , MicroARNs/genética , Neoplasias/patología , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular Tumoral , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , MicroARNs/biosíntesis , Trasplante de Neoplasias , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Microambiente Tumoral/fisiología , Proteína Elk-1 con Dominio ets/metabolismo
20.
Future Med Chem ; 7(4): 437-48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875871

RESUMEN

BACKGROUND: G-protein coupled estrogen receptor (GPER) is involved in numerous intracellular physiological and pathological events including cancer cell migration and proliferation. Its characterization is yet incomplete due to the limited number of specific ligands. RESULTS: Two novel selective GPER antagonists, based on a benzo[b]pyrrolo[1,2-d][1,4]oxazin-4-one structure, have been designed and synthesized. Their binding to the receptor was confirmed by a competition assay, while the antagonist effects were ascertained by their capability to prevent the ligand-stimulated action of GPER. The transcription mediated by the classical estrogen receptor was not influenced, demonstrating selectivity for GPER. CONCLUSION: These novel compounds may be considered useful leads toward the dissection of the GPER signaling and the development of new pharmacological treatments in breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Pirroles/síntesis química , Pirroles/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Unión Competitiva , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Indicadores y Reactivos , Ligandos , Modelos Moleculares , Conformación Molecular , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA