Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Chem ; 10: 870137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494653

RESUMEN

The incorporation of a guest, with different basic sites, into an organized system (host), such as macrocycles, could stabilize, detect, or promote the formation of a certain protomer. In this context, this work aimed to study the influence of cucurbit[7]uril (CB7) on dyes such as 7-(dimethylamino)-aza-coumarins, which have more than one basic site along their molecular structure. For this, three 3-styryl derivatives of 7-(dialkylamino)-aza-coumarin dyes (SAC1-3) were synthesized and characterized by NMR, ESI-HRMS and IR. The spectral behaviour of the SACs in the absence and presence of CB7 was studied. The results showed large shifts in the UV-vis spectrum in acid medium: a hypsochromic shift of ≈5400 cm-1 (SAC1-2) and ≈3500 cm-1 (SAC3) in the absence of CB7 and a bathochromic shift of ≈4500 cm-1 (SAC1-3) in the presence of CB7. The new absorptions at long and short wavelengths were assigned to the corresponding protomers by computational calculations at the density functional theory (DFT) level. Additionally, the binding mode was corroborated by molecular dynamics simulations. Findings revealed that in the presence of CB7 the heterocyclic nitrogen was preferably protonated instead of the dialkylamino group. Namely, CB7 induces a change in the protonation preference at the basic sites of the SACs, as consequence of the molecular recognition by the macrocycle.

2.
ACS Omega ; 6(15): 10333-10342, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34056186

RESUMEN

A series of aromatic Schiff bases, featuring 7-diethylamino-coumarin and with five different substituents at an adjacent phenyl ring, were synthesized and characterized. With the aim of assessing the stability of these dyes in acidic medium, their hydrolysis reactions were kinetically studied in the absence and presence of the macrocycle cucurbit[7]uril (CB[7]). Our results are consistent with a model containing three different forms of substrates (un-, mono-, and diprotonated) and three parallel reaction pathways. The pK a values and the rate constants were estimated and discussed in terms of the presence of a hydroxyl group at the ortho position and electron-releasing groups on the phenyl ring of the dyes. The kinetic study in the presence of CB[7] led to two different behaviors. Promotion of the reaction by CB[7] was observed for the hydrolysis of the Schiff bases containing only one coordination site toward the macrocycle. Conversely, an inhibitor effect was observed for the hydrolysis of a Schiff base with two coordination sites toward CB[7]. The latter effect could be explained with a model as a function of a prototropic tautomeric equilibrium and the formation of a 2:1 host/guest complex, which prevents the attack of water. Therefore, the kinetic results demonstrated a supramolecular control of the macrocycle toward the reactivity and stability of 7-diethylaminocoumarin Schiff bases in acidic medium.

3.
J Org Chem ; 86(2): 2023-2027, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33373222

RESUMEN

Cucurbit[7]uril (CB7) catalyzes the hydrolysis reaction of bis(4-nitrophenyl)carbonate (1) but inhibits that of bis(4-nitrophenyl)thiocarbonate (2). Two relevant CB7 effects are proposed, a base-catalyst mediated by the CB7 portal and an inhibitory role attributed to the lower interaction of the thiocarbonyl group with the solvent in the host cavity, respectively.

4.
Org Biomol Chem ; 14(4): 1502, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26753531

RESUMEN

Correction for 'Reaction mechanisms in ionic liquids: the kinetics and mechanism of the reaction of O,O-diethyl (2,4-dinitrophenyl) phosphate triester with secondary alicyclic amines' by Paulina Pavez et al., Org. Biomol. Chem., 2016, DOI: 10.1039/c5ob02128f.

5.
Org Biomol Chem ; 14(4): 1421-7, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26676671

RESUMEN

The reactions of O,O-diethyl 2,4-dinitrophenyl phosphate triester (1) with secondary alicyclic (SA) amines in the ionic liquids [Bmim]BF4 and [Bmim]DCA were subjected to a kinetic study. Eyring plots were obtained for the title reactions in the above ionic liquids (ILs) and also in aqueous ethanol (44 wt% ethanol). Two different reaction pathways were observed in [Bmim]BF4: nucleophilic attack at the phosphoryl center, SN2(P), and at the C-1 aromatic carbon, SN(Ar), where the product distribution remained constant and independent of the amine nature. In contrast, in [Bmim]DCA only the SN2(P) pathway was found. From the kinetic analysis of the SN2(P) pathway in both ILs, curved upwards plots of kobsdvs. 1-formylpiperazine concentration were obtained. Based on the kinetic behavior, a change in the mechanism of the SN2(P) pathway is proposed for the aminolysis of 1, from a concerted process in aqueous ethanol to a stepwise mechanism, through a zwitterionic pentacoordinate intermediate, when [Bmim]BF4 and [Bmim]DCA are used as the solvents of the reaction.

6.
J Phys Chem B ; 118(16): 4412-8, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24689739

RESUMEN

An electrochemical technique was used to investigate pKa values of some substituted secondary alicyclic (SA) amines, pyridines (py), anilines (AN), and triethylamine (Et3N) in different ionic liquids. The method involves cyclic voltammetry at a platinized Pt electrode. The experimental data were correlated with pKa values reported previously in aqueous solution, and Hammett parameters were correlated with pKa values in ionic liquids to determine ρ values in these media.

7.
J Org Chem ; 78(19): 9670-6, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24001321

RESUMEN

Herein, the reactivity and selectivity of the reaction of O,O-diethyl 4-nitrophenyl phosphate triester (Paraxon, 1) with piperidine in ionic liquids (ILs), three conventional organic solvents (COS), and water is studied by (31)P NMR, UV-vis, and GC/MS. Three phosphorylated products are identified as follows: O,O-diethyl piperidinophosphate diester (2), O,O-diethyl phosphate (3), and O-ethyl 4-nitrophenyl phosphate diester (4). Compound 4 also reacts with piperidine to yield O-ethyl piperidinophosphate monoester (5). The results show that both the rate and products distribution of this reaction depend on peculiar features of ILs as reaction media and the polarity of COS.


Asunto(s)
Líquidos Iónicos/química , Nitrobencenos/química , Paraoxon/química , Piperidinas/química , Solventes/química , Espectroscopía de Resonancia Magnética , Agua
8.
J Phys Chem B ; 117(19): 5908-15, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23597183

RESUMEN

Preferential solvation in aromatic nucleophilic substitution reactions is discussed using a kinetic study complemented with quantum chemical calculations. The model system is the reaction of a series of secondary alicyclic amines toward phenyl 2,4,6-trinitrophenyl ether in aqueous ethanol mixtures of different compositions. From solvent effect studies, it is found that only piperidine is sensitive to solvation effects, a result that may be traced to the polarity of the solvent composition in the ethanol/water mixture, which points to a specific electrophilic solvation in the aqueous phase.

9.
J Org Chem ; 74(23): 9173-9, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19908875

RESUMEN

The reactions of S-phenyl, S-(4-chlorophenyl), and S-(2,3,4,5,6-pentafluorophenyl) 4-nitrophenyl thiocarbonates (9, 11, and 16, respectively) with a series of secondary alicyclic (SA) amines and those of S-(4-methylphenyl) 4-nitrophenyl thiocarbonate (8) and compounds 9 and 11 with a series of phenols are subjected to a kinetic investigation in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M. The reactions were followed spectrophotometrically. Under nucleophile excess, pseudo-first-order rate coefficients (k(obsd)) were found. For all these reactions, plots of k(obsd) vs. free amine or phenoxide anion concentration at constant pH are linear, the slope (k(N)) being independent of pH. The Brønsted-type plots (log k(N) vs. pK(a) of the conjugate acids of the nucleophiles) for the aminolysis of 9, 11, and 16 are linear with slopes beta = 0.85, 0.90, and 0.67, respectively. The two former slopes are consistent with a stepwise mechanism, through a zwitterionic tetrahedral intermediate, which breaking to products is rate determining. The latter beta value is consistent with a concerted mechanism. The Brønsted-type plots for the phenolysis of thiocarbonates 8, 9, and 11 are linear with slopes beta = 0.62, 0.70, and 0.69, respectively. These beta values and the absence of curvature at pK(a) = 7.5 confirm a concerted mechanism. In all these reactions, except those of 16, the main nucleofuge is 4-nitrophenoxide, being the thio benzenethiolate the minor nucleofuge. For the reactions of thiocarbonate 16 the main nucleofuge is pentafluorobenzenethiolate whereas little 4-nitrophenoxide was found. The reactions of two SA amines with S-(3-chlorophenyl) 4-nitrophenyl thiocarbonate (10) were subjected to product analysis, showing 60% 4-nitrophenoxide and 40% 3-chlorobenzenethiolate. The study is completed with a theoretical analysis based on the group electrophilicity index, a reactivity descriptor that may be taken as a measure of the ability of a group or fragment to depart from a molecule with the bonding electron pair. The theoretical analysis is in accordance with the experimental results obtained and predicts relative nucleofugalities of O-aryl vs. S-aryl groups in a series of diaryl thiocarbonates not experimentally evaluated to date.


Asunto(s)
Carbonatos/química , Compuestos de Sulfhidrilo/química , Aminas/química , Concentración de Iones de Hidrógeno , Cinética , Concentración Osmolar , Fenoles/química
10.
J Org Chem ; 74(16): 6374-7, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19610609

RESUMEN

The Brønsted plots for the title reactions are linear with slopes of 0.53-0.56. The magnitude of the slopes and the fact that there are no breaks at the predicted pK(a) for stepwise mechanisms indicate that these reactions are concerted. This finding is in great contrast to the stepwise mechanisms found for the pyridinolysis of other carbonates. The concerted mechanism is attributed to the fact that the title carbonates possess two O-aryl groups, one of them being an exceptionally good nucleofuge.

11.
J Org Chem ; 70(20): 8088-92, 2005 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-16277331

RESUMEN

[Chemical reaction: See text] The reactions of anilines with 4-nitrophenyl, 4-methylphenyl, and 4-chlorophenyl 4-nitrophenyl carbonates (BNPC, MPNPC and ClPNPC, respectively) are studied kinetically in 44 wt % ethanol-water, at 25.0 degrees C, with an ionic strength of 0.2 M (KCl). Plots of k(obsd) vs [amine] are linear, with the slopes (kN) independent of pH. The Brønsted-type plots (log k(N) vs pKa of conjugate acids of anilines) are linear, with slopes beta = 0.65, 0.85, and 0.78 for the reactions of anilines with BNPC, MPNPC, and ClPNPC, respectively. The values of the slopes for the two latter reactions are in accordance with those obtained in stepwise mechanism where breakdown to product of a zwitterionic tetrahedral intermediate is the rate-determining step. On the other hand, the beta value for the reactions of BNPC is at the upper limit of those found for concerted mechanisms. The kinetic results for the reactions of anilines with BNPC correlates well with those for the concerted reactions of the same amines with 4-methylphenyl and 4-chlorophenyl 2,4-dinitrophenyl carbonates: A plot of the calculated log k(N) values (through a multiple parametric equation) vs the experimental log k(N) values is linear with unity slope and zero intercept, which confirms the concerted mechanism for the latter three reactions.

12.
J Org Chem ; 70(19): 7788-91, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-16149817

RESUMEN

[reaction: see text] The title reactions, in 44 wt % ethanol-water at 25.0 degrees C, exhibit slightly curved Brønsted-type plots (log kN versus pKa of amines) with slopes beta1 = 0.1-0.44 (at high pKa) and beta2 ca. 0.7 (at low pKa). The magnitude of some of these slopes, together with the fact that the curvature center (pKa(0) = 9.5-10.8) does not change with the electronic effects of the benzoyl substituent, suggests that these reactions are not stepwise, but concerted.

13.
J Org Chem ; 70(9): 3530-6, 2005 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-15844987

RESUMEN

[reaction: see text] The reactions of S-2,4-dinitrophenyl 4-methyl (1), S-2,4-dinitrophenyl 4-H (2), S-2,4-dinitrophenyl 4-chloro (3), and S-2,4-dinitrophenyl 4-nitro (4) thiobenzoates with a structurally homogeneous series of pyridines are subjected to a kinetic investigation in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). The reactions are studied spectrophotometrically (420 nm) by monitoring the appearance of 2,4-dinitrobenzenethiolate anion. Pseudo-first-order rate coefficients (k(obsd)) are obtained for all the reactions, employing excess of amine. The plots of k(obsd) vs [free pyridine] at constant pH are linear with the slopes (k(N)) independent of pH. The Brønsted-type plots (log k(N) vs pK(a) of the conjugate acid of the pyridines) are curved for all the reactions. The Brønsted curves are in accordance with stepwise mechanisms, through a zwitterionic tetrahedral intermediate (T(+/-)), and a change in the rate-limiting step. An equation based on this hypothesis accounts well for the experimental points. The Brønsted lines were calculated with the following parameters: Reactions of thiolbenzoate 1: beta(1) 0.33 (slope at high pK(a)), beta(2) 0.95 (slope at low pK(a)), and pK(a)(0) = 8.5 (pK(a) at the curvature center); thiolbenzoate 2: beta(1) 0.30, beta(2) 0.88, and pK(a)(0) = 8.9; thiolbenzoate 3: beta(1) 0.33, beta(2) 0.89, and pK(a)(0) = 9.5; thiolbenzoate 4: beta(1) 0.21, beta(2) 0.97, and pK(a)(0) = 9.9. The increase of the pK(a)(0) value with the increase of the electron-withdrawing effect of the acyl substituent is explained by the argument that the rate of pyridine expulsion from T(+/-) (k(-)(1)) is favored over that of 2,4-dinitrobenzenethiolate leaving (k(2)), i.e., k(-)(1)/k(2) increases, as the acyl group becomes more electron withdrawing. The pK(a)(0) values for the title reactions are smaller than those for the reactions of the corresponding 4-nitrophenyl 4-substituted thiolbenzoates with the same pyridine series. This is explained by the larger k(2) value for 2,4-dinitrobenzenethiolate leaving from T(+/-) compared with 4-nitrobenzenethiolate, which results in lower k(-)(1)/k(2) ratios for the dinitro derivatives. The pK(a)(0) value obtained for the pyridinolysis of thiolbenzoate 2 (pK(a)(0) = 8.9) is smaller than that found for the same aminolysis of 2,4-dinitrophenyl benzoate (pK(a)(0) = 9.5). This is attributed to the greater nucleofugality from T(+/-) of 2,4-dinitrobenzenethiolate (pK(a) of conjugate acid 3.4) relative to 2,4-dinitrophenoxide (pK(a) of conjugate acid 4.1). The title reactions are also compared with the aminolysis of similar esters to assess the effect of the amine nature and leaving and acyl groups on the kinetics and mechanism.

14.
J Org Chem ; 70(7): 2679-85, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15787559

RESUMEN

[reaction: see text] The reactions of secondary alicyclic (SA) amines and quinuclidines (QUI) with 4-nitrophenyl and 2,4-dinitrophenyl S-methyl thiocarbonates (1 and 2, respectively) and those of SA amines with 2,3,4,5,6-pentafluorophenyl S-methyl thiocarbonate (3) are subjected to a kinetic study in aqueous solution, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). The reactions of thiocarbonates 1, 2, and 3 were followed spectrophotometrically at 400, 360, and 220 nm, respectively. Under amine excess, pseudo-first-order rate coefficients (k(obsd)) are found. Plots of k(obsd) vs amine concentration at constant pH are linear, with the slope (kN) independent of pH. The Brønsted-type plots (log kN vs pKa of aminium ions) are linear for all the reactions, with slopes beta = 0.9 for those of 1 with SA amines and QUI, beta = 0.36 and 0.57 for the reactions of 2 with SA amines and QUI, respectively, and beta = 0.39 for the reactions of SA amines with 3. The magnitude of the slopes indicates that both aminolyses of 1 are governed by stepwise mechanisms, through a zwitterionic tetrahedral intermediate (T+/-), where expulsion of the nucleofuge from T+/- is the rate-determining step. The values of the Brønsted slopes found for the aminolyses of thiocarbonates 2 and 3 suggest that these reactions are concerted. By comparison of the reactions under investigation between them and with similar aminolyses, the following conclusions arise: (i) Thiocarbonate 2 is more reactive than 1 toward the two amine series. (ii) The change of the nonleaving group from MeO in 4-nitrophenyl methyl carbonate to MeS in thiocarbonate 1 results in lower kN values. (iii) The greater reactivity of this carbonate than thiocarbonate 1 is attributed to steric hindrance of the MeS group, compared to MeO toward amine attack. (iv) The change of a pyridine to an isobasic SA amine or QUI destabilizes the T+/- intermediate formed in the aminolyses of 2. (v) The change of 4-nitrophenoxy to 2,3,4,5,6-pentafluorphenoxy or 2,4-dinitrophenoxy as the leaving group destabilizes the tetrahedral intermediate formed in the reactions with SA amines, changing the mechanism from a stepwise process to a concerted reaction.

15.
J Org Chem ; 70(5): 1754-60, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15730298

RESUMEN

Quantitative relationships are reported between the global electrophilicity index and the experimental rate coefficients for the reactions of thiolcarbonates and dithiocarbonates with piperidine. The validated scale of electrophilicity is then used to rationalize the reaction mechanisms of these systems. This scale also makes it possible to predict both rate coefficients and Hammett substituent constants for a series of systems that have not been experimentally evaluated to date.


Asunto(s)
Aminas/química , Carbonatos/síntesis química , Relación Estructura-Actividad Cuantitativa , Carbonatos/química , Simulación por Computador , Cinética , Modelos Químicos , Estructura Molecular , Compuestos de Sulfhidrilo/química
16.
J Org Chem ; 69(20): 6711-4, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15387594

RESUMEN

The reactions of 4-nitrophenyl and 2,4-dinitrophenyl S-methyl thiocarbonates (1 and 2, respectively) with a series of 3- and/or 4-substituted pyridines in aqueous solution, at 25.0 degrees C and an ionic strength of 0.2 M (KCl), are subjected to a kinetic investigation. The reactions are studied by following spectrophotometrically the release of 4-nitrophenoxide (400 nm) or 2,4-dinitrophenoxide (360 nm) anions. Under amine excess, pseudo-first-order rate coefficients (kobsd) are found. Plots of kobsd vs [pyridine] are linear and pH-independent, with slope kN. The Brønsted-type plot (log kN vs pKa of pyridinium ions) for the reactions of 1 is linear, with slope beta = 1.1, in contrast to the plot for the reactions of 2, which is biphasic, with slopes beta1 = 0.25 (high pKa) and beta2 = 0.90 (low pKa) and the curvature center at pKa = p = 7.3. The latter Brønsted plot is consistent with a stepwise mechanism, through a zwitterionic tetrahedral intermediate (T+/-) on the reaction path, and a change of the rate-determining step, from breakdown to formation of T+/-, as pyridine basicity increases. For the reactions of 1 the beta value indicates that the mechanism is also stepwise with expulsion of the nucleofuge from T+/- as the rate-determining step. By comparison of the reactions under investigation among each other and with similar aminolyses, the following conclusions can be drawn. (i) Thiocarbonate 2 is more reactive than 1 toward pyridines. (ii) The pka0 value for the pyridinolysis of 2,4-dinitrophenyl methyl carbonate (4) is larger than that for thiocarbonate 2. (iii) The k1 values (pyridine attack to form T+/-) are smaller for thiocarbonates 1 and 2 than the corresponding oxy carbonates 3 and 4, respectively. This is not in accordance with the electronic effects of MeS and MeO and could be attributed to steric hindrance of the MeS group toward pyridine attack. (iv) The kN values for the pyridinolysis of carbonates 3 and 4 are larger than those for thiocarbonates 1 and 2, respectively, when the k2 step is rate-limiting.

17.
J Org Chem ; 69(16): 5399-404, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15287788

RESUMEN

The pyridinolysis of S-4-nitrophenyl 4-X-substituted thiobenzoates (X = H, Cl, and NO2; 1, 2, and 3, respectively) is studied kinetically in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). The reactions are measured spectrophotometrically (420-425 nm) by following the appearance of 4-nitrobenzenethiolate anion. Pseudo-first-order rate coefficients (kobsd) are obtained throughout, under excess of amine over the substrate. Plots of kobsd vs [free amine] at constant pH are linear with the slope (kN) independent of pH. The Brnsted-type plot (log kN vs pKa0 of the conjugate acids of the pyridines) for the reactions of thiolbenzoate 1 is curved with a slope at high pKa, beta1 = 0.20, and slope at low pKa0, beta2 = 0.94. The pKa value for the center of the Brnsted curvature is pKa0 = 9.7. The pyridinolysis of thiolbenzoates 2 and 3 show linear Brnsted-type plots of slopes 0.94 and 1.0, respectively. These results and other evidence indicate that these reactions occur with the formation of a zwitterionic tetrahedral intermediate (T+/-). For the pyridinolysis of thiolbenzoate 1, breakdown of T+/- to products (k2 step) is rate-limiting for weakly basic pyridines and T+/- formation (k1 step) is rate-determining for very basic pyridines. The k2 step is rate-limiting for the reactions of thiolbenzoates 2 and 3. The smallest pKa0 value for the reaction of 1 is due to the weakest electron withdrawal of H (relative to Cl and NO2) in the acyl group, which results in the smallest k-1/k2 ratio. The pKa0 values for the title reactions are smaller than those for the reactions of secondary alicyclic amines with thiolbenzoates 1-3. This is attributed to a lower leaving ability from the T+/- of pyridines than isobasic alicyclic amines. The lower p value found for the pyridinolysis of 2,4-dinitrophenyl benzoate (pKa0 = 9.5), compared with that for the pyridinolysis of 1, is explained by the greater nucleofugality from T+/- of 2,4-dinitrophenoxide than 4-nitrobenzenethiolate, which renders the k-1/k2 ratio smaller for the reactions of the benzoate relative to thiolbenzoate 1. The title reactions are also compared with the aminolysis of similar thiolbenzoates in other solvents to assess the solvent effect.

18.
J Org Chem ; 69(14): 4802-7, 2004 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-15230606

RESUMEN

The title reactions are subjected to a kinetic study in water, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). By following the reactions spectrophotometrically two consecutive reactions are observed: the first is formation of the corresponding thionocarbamates (1-(aryloxythiocarbonyl)pyridinium cations) and the second is their decomposition to the corresponding phenol and pyridine, and COS. Pseudo-first-order rate coefficients (k(obsd1) and k(obsd2), respectively) are found under excess amine. Plots of k(obsd1) vs free pyridine concentration at constant pH are linear, with the slope (k(N)) independent of pH. The Brønsted-type plots (log k(N) vs pK(a) of the conjugate acids of the pyridines) are linear with slopes beta = 0.07 and 0.11 for the reactions of phenyl and 4-nitrophenyl chlorothionoformates, respectively. These Brønsted slopes are in agreement with those found in other stepwise reactions of the same pyridines in water, where the formation of a tetrahedral intermediate is the rate-determining step. In contrast to the stepwise mechanism of the title reactions that for the reactions of the same substrates with phenols is concerted, which means that substitution of a pyridino moiety in a tetrahedral intermediate by a phenoxy group destabilizes the intermediate. The second reaction corresponds to the pyridine-catalyzed hydrolysis of the corresponding 1-(aryloxythiocarbonyl)pyridinium cation. Plots of k(obsd2) vs free pyridine concentration at constant pH are linear, with the slope (k(H)) independent of pH. The Brønsted plots for k(H) are linear with slopes beta = 0.19 and 0.26 for the reactions of the phenyl and 4-nitrophenyl derivatives, respectively. These low values are explained by the fact that as pK(a) increases the effect of a better pyridine catalyst is compensated by a worse leaving pyridine from the corresponding thionocarbamate

19.
J Org Chem ; 69(7): 2411-6, 2004 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-15049638

RESUMEN

The reactions of a series of secondary alicyclic (SA) amines with O-phenyl and O-ethyl O-(2,4-dinitrophenyl) thiocarbonates (1 and 2, respectively) and of a series of pyridines with the former substrate are subjected to a kinetic investigation in water, at 25.0 degrees C, ionic strength 0.2 M (KCl). Under amine excess over the substrate, all the reactions obey pseudo-first-order kinetics and are first-order in amine. The Brönsted-type plots are biphasic, with slopes (at high pK(a)) of beta(1) = 0.20 for the reactions of SA amines with 1 and 2 and beta(1) = 0.10 for the pyridinolysis of 1 and with slopes (at low pK(a)) of beta(2) = 0.80 for the reactions of SA amines with 1 and 2 and beta(2) = 1.0 for the pyridinolysis of 1. The pK(a) values at the curvature center (pK(a)(0)) are 7.7, 7.0, and 7.0, respectively. These results are consistent with the existence of a zwitterionic tetrahedral intermediate (T++) and a change in the rate-determining step with the variation of amine basicity. The larger pK(a)(0) value for the pyridinolysis of 1 compared to that for 2 (pK(a)(0) = 6.8) and the larger pK(a)(0) value for the reactions of SA amines with 1 relative to 2 are explained by the greater inductive electron withdrawal of PhO compared to EtO. The larger pK(a)(0) values for the reactions of SA amines with 1 and 2, relative to their corresponding pyridinolysis, are attributed to the greater nucleofugalities of SA amines compared to isobasic pyridines. The smaller pK(a)(0) value for the reactions of SA amines with 2 than with O-ethyl S-(2,4-dinitrophenyl) dithiocarbonate (pK(a)(0) = 9.2) is explained by the greater nucleofugality from T(++) of 2,4-dinitrophenoxide (DNPO(-)) relative to the thio derivative. The stepwise reactions of SA amines with 1 and 2, in contrast to the concerted mechanisms for the reactions of the same amines with the corresponding carbonates, is attributed to stabilization of T(++) by the change of O(-) to S(-). The simple mechanism for the SA aminolysis of 2 (only one tetrahedral intermediate, T(++)) is in contrast to the more complex mechanism (two tetrahedral intermediates, T(++) and T(-), the latter formed by deprotonation of T(++) by the amine) for the same aminolysis of the analogous thionocarbonate with 4-nitrophenoxide (NPO(-)) as nucleofuge. To our knowledge, this is the first example of a remarkable change in the decomposition path of a tetrahedral intermediate T by replacement of NPO(-) with DNPO(-) as the leaving group of the substrate. This is explained by (i) the greater leaving ability from T(++) of DNPO(-) than NPO(-) and (ii) the similar rates of deprotonation of both T(++) (formed with DNPO and NPO).

20.
J Org Chem ; 68(23): 9034-9, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-14604378

RESUMEN

Reactions of O-ethyl 2,4-dinitrophenyl dithiocarbonate (EDNPDTC), O-ethyl 2,4,6-trinitrophenyl dithiocarbonate (ETNPDTC), and O-methyl O-(2,4-dinitrophenyl) thiocarbonate (MDNPTOC) with a series of benzenethiolate anions in aqueous solution, at 25.0 degrees C and an ionic strength of 0.2 M (KCl), are subjected to a kinetic investigation. Under excess benzenethiolate, these reactions obey pseudo-first-order kinetics and are first order in benzenethiolate. Nonetheless, similar reactant concentrations were used in the reactions of 4-nitrobenzenethiolate anion with the ethyl trinitrophenyl ester (ETNPDTC), which showed overall second-order kinetics. The nucleophilic rate constants (k(N)) are pH independent, except those for the reactions of ETNPDTC with the X-benzenethiolates with X = H, 4-Cl, and 3-Cl, which increase as pH decreases. The Brønsted-type plots (log k(N) vs pK(a) of benzenethiols) are linear with slopes beta = 0.66 for the reactions of both ethyl dinitrophenyl ester (EDNPDTC) and ethyl trinitrophenyl ester (ETNPDTC) and beta = 0.58 for those of the thiocarbonate ester (MDNPTOC). For the benzenethiolysis of MDNPTOC and EDNPDTC, no breaks were found in the Brønsted-type plots at pK(a) 4.1 and 3.4, respectively, consistent with concerted mechanisms. Benzenethiolysis of the ethyl trinitrophenyl ester (ETNPDTC) should also be concerted in view of the even more unstable tetrahedral "intermediate" that would have been formed had this reaction been stepwise. ETNPDTC is more reactive toward benzenethiolate anions than EDNPDTC due to the better leaving group involved in the former substrate. The k(N) values found for the reactions of EDNPDTC with benzenethiolates are larger than those obtained for the concerted reactions of the same substrate with isobasic phenoxide anions. This is explained by Pearson's "hard and soft acids and bases" principle. The concerted mechanism for the benzenethiolysis of MDNPTOC, in contrast to the stepwise mechanism found for the phenolysis of this substrate, is attributed to the greater kinetic instability of the hypothetical tetrahedral "intermediate" formed in the former reaction, due to the greater nucleofugality of ArS(-) compared with an isobasic ArO(-). Benzenethiolates are more reactive toward MDNPTOC and EDNPDTC than the corresponding carbonate and thiolcarbonate, respectively. This is also in accordance with the HSAB principle, since benzenthiolates are relatively soft bases that prefer to bind to a relatively soft thiocarbonyl center rather than a relatively hard carbonyl center.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA