Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Blood ; 142(18): 1543-1555, 2023 11 02.
Article En | MEDLINE | ID: mdl-37562004

A strategy combining targeted therapies is effective in B-cell lymphomas (BCL), such as mantle cell lymphoma (MCL), but acquired resistances remain a recurrent issue. In this study, we performed integrative longitudinal genomic and single-cell RNA-sequencing analyses of patients with MCL who were treated with targeted therapies against CD20, BCL2, and Bruton tyrosine kinase (OAsIs trial). We revealed the emergence of subclones with a selective advantage against OAsIs combination in vivo and showed that resistant cells were characterized by B-cell receptor (BCR)-independent overexpression of NF-κB1 target genes, especially owing to CARD11 mutations. Functional studies demonstrated that CARD11 gain of function not only resulted in BCR independence but also directly increased the transcription of the antiapoptotic BCL2A1, leading to resistance against venetoclax and OAsIs combination. Based on the transcriptional profile of OAsIs-resistant subclones, we designed a 16-gene resistance signature that was also predictive for patients with MCL who were treated with conventional chemotherapy, underlying a common escape mechanism. Among druggable strategies to inhibit CARD11-dependent NF-κB1 transduction, we evaluated the selective inhibition of its essential partner MALT1. We demonstrated that MALT1 protease inhibition led to a reduction in the expression of genes involved in OAsIs resistance, including BCL2A1. Consequently, MALT1 inhibition induced synergistic cell death in combination with BCL2 inhibition, irrespective of CARD11 mutational status, both in vitro and in vivo. Taken together, our study identified mechanisms of resistance to targeted therapies and provided a novel strategy to overcome resistance in aggressive BCL. The OAsIs trial was registered at www.clinicaltrials.gov #NCT02558816.


Lymphoma, Large B-Cell, Diffuse , Lymphoma, Mantle-Cell , Adult , Humans , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Cell Line, Tumor , Gain of Function Mutation , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Mantle-Cell/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
2.
Front Immunol ; 14: 1130052, 2023.
Article En | MEDLINE | ID: mdl-37153563

Background: Immunotherapy-based regimens have considerably improved the survival rate of B-cell non-Hodgkin lymphoma (B-NHL) patients in the last decades; however, most disease subtypes remain almost incurable. TG-1801, a bispecific antibody that targets CD47 selectively on CD19+ B-cells, is under clinical evaluation in relapsed/refractory (R/R) B-NHL patients either as a single-agent or in combination with ublituximab, a new generation CD20 antibody. Methods: A set of eight B-NHL cell lines and primary samples were cultured in vitro in the presence of bone marrow-derived stromal cells, M2-polarized primary macrophages, and primary circulating PBMCs as a source of effector cells. Cell response to TG-1801 alone or combined with the U2 regimen associating ublituximab to the PI3Kδ inhibitor umbralisib, was analyzed by proliferation assay, western blot, transcriptomic analysis (qPCR array and RNA sequencing followed by gene set enrichment analysis) and/or quantification of antibody-dependent cell death (ADCC) and antibody-dependent cell phagocytosis (ADCP). CRISPR-Cas9 gene edition was used to selectively abrogate GPR183 gene expression in B-NHL cells. In vivo, drug efficacy was determined in immunodeficient (NSG mice) or immune-competent (chicken embryo chorioallantoic membrane (CAM)) B-NHL xenograft models. Results: Using a panel of B-NHL co-cultures, we show that TG-1801, by disrupting the CD47-SIRPα axis, potentiates anti-CD20-mediated ADCC and ADCP. This led to a remarkable and durable antitumor effect of the triplet therapy composed by TG-1801 and U2 regimen, in vitro, as well as in mice and CAM xenograft models of B-NHL. Transcriptomic analysis also uncovered the upregulation of the G protein-coupled and inflammatory receptor, GPR183, as a crucial event associated with the efficacy of the triplet combination. Genetic depletion and pharmacological inhibition of GPR183 impaired ADCP initiation, cytoskeleton remodeling and cell migration in 2D and 3D spheroid B-NHL co-cultures, and disrupted macrophage-mediated control of tumor growth in B-NHL CAM xenografts. Conclusions: Altogether, our results support a crucial role for GPR183 in the recognition and elimination of malignant B cells upon concomitant targeting of CD20, CD47 and PI3Kδ, and warrant further clinical evaluation of this triplet regimen in B-NHL.


Antibodies, Bispecific , Burkitt Lymphoma , Lymphoma, B-Cell , Neoplasms , Chick Embryo , Humans , Mice , Animals , Immune Checkpoint Inhibitors/therapeutic use , CD47 Antigen , Neoplasms/metabolism , Lymphoma, B-Cell/drug therapy , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Disease Models, Animal , Receptors, G-Protein-Coupled
3.
Cells ; 12(3)2023 01 28.
Article En | MEDLINE | ID: mdl-36766776

Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.


Hematologic Neoplasms , Neoplasms , Humans , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Signal Transduction , Mutation , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics
4.
Cancers (Basel) ; 14(22)2022 Nov 15.
Article En | MEDLINE | ID: mdl-36428695

BACKGROUND: Mantle cell lymphoma (MCL) is a rare and aggressive subtype of B-cell non-Hodgkin lymphoma that remains incurable with standard therapy. Statins are well-tolerated, inexpensive, and widely prescribed as cholesterol-lowering agents to treat hyperlipidemia and to prevent cardiovascular diseases through the blockage of the mevalonate metabolic pathway. These drugs have also shown promising anti-cancer activity through pleiotropic effects including the induction of lymphoma cell death. However, their potential use as anti-MCL agents has not been evaluated so far. AIM: The present study aimed to investigate the activity of simvastatin on MCL cells. METHODS: We evaluated the cytotoxicity of simvastatin in MCL cell lines by CellTiter-Glo and lactate dehydrogenase (LDH) release assays. Cell proliferation and mitotic index were assessed by direct cell recounting and histone H3-pSer10 immunostaining. Apoptosis induction and reactive oxygen species (ROS) generation were evaluated by flow cytometry. Cell migration and invasion properties were determined by transwell assay. The antitumoral effect of simvastatin in vivo was evaluated in a chick embryo chorioallantoic membrane (CAM) MCL xenograft model. RESULTS: We show that treatment with simvastatin induced a 2 to 6-fold LDH release, inhibited more than 50% of cell proliferation, and enhanced the caspase-independent ROS-mediated death of MCL cells. The effective impairment of MCL cell survival was accompanied by the inhibition of AKT and mTOR phosphorylation. Moreover, simvastatin strongly decreased MCL cell migration and invasion ability, leading to a 55% tumor growth inhibition and a consistent diminution of bone marrow and spleen metastasis in vivo. CONCLUSION: Altogether, these data provide the first preclinical insight into the effect of simvastatin against MCL cells, suggesting that this agent might be considered for repurpose as a precise MCL therapy.

5.
Cancers (Basel) ; 14(4)2022 Feb 09.
Article En | MEDLINE | ID: mdl-35205606

The proliferation and survival signals emanating from the B-cell receptor (BCR) constitute a crucial aspect of mature lymphocyte's life. Dysregulated BCR signaling is considered a potent contributor to tumor survival in different subtypes of B-cell non-Hodgkin lymphomas (B-NHLs). In the last decade, the emergence of BCR-associated kinases as rational therapeutic targets has led to the development and approval of several small molecule inhibitors targeting either Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), or phosphatidylinositol 3 kinase (PI3K), offering alternative treatment options to standard chemoimmunotherapy, and making some of these drugs valuable assets in the anti-lymphoma armamentarium. Despite their initial effectiveness, these precision medicine strategies are limited by primary resistance in aggressive B-cell lymphoma such as diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), especially in the case of first generation BTK inhibitors. In these patients, BCR-targeting drugs often fail to produce durable responses, and nearly all cases eventually progress with a dismal outcome, due to secondary resistance. This review will discuss our current understanding of the role of antigen-dependent and antigen-independent BCR signaling in DLBCL and MCL and will cover both approved inhibitors and investigational molecules being evaluated in early preclinical studies. We will discuss how the mechanisms of action of these molecules, and their off/on-target effects can influence their effectiveness and lead to toxicity, and how our actual knowledge supports the development of more specific inhibitors and new, rationally based, combination therapies, for the management of MCL and DLBCL patients.

6.
Clin Cancer Res ; 27(23): 6591-6601, 2021 12 01.
Article En | MEDLINE | ID: mdl-34551904

PURPOSE: Despite the remarkable activity of BTK inhibitors (BTKi) in relapsed B-cell non-Hodgkin lymphoma (B-NHL), no clinically-relevant biomarker has been associated to these agents so far. The relevance of phosphoproteomic profiling for the early identification of BTKi responders remains underexplored. EXPERIMENTAL DESIGN: A set of six clinical samples from an ongoing phase I trial dosing patients with chronic lymphocytic leukemia (CLL) with TG-1701, a novel irreversible and highly specific BTKi, were characterized by phosphoproteomic and RNA sequencing (RNA-seq) analysis. The activity of TG-1701 was evaluated in a panel of 11 B-NHL cell lines and mouse xenografts, including two NF-κB- and BTKC481S-driven BTKi-resistant models. Biomarker validation and signal transduction analysis were conducted through real-time PCR, Western blot analysis, immunostaining, and gene knockout (KO) experiments. RESULTS: A nonsupervised, phosphoproteomic-based clustering did match the early clinical outcomes of patients with CLL and separated a group of "early-responders" from a group of "late-responders." This clustering was based on a selected list of 96 phosphosites with Ikaros-pSer442/445 as a potential biomarker for TG-1701 efficacy. TG-1701 treatment was further shown to blunt Ikaros gene signature, including YES1 and MYC, in early-responder patients as well as in BTKi-sensitive B-NHL cell lines and xenografts. In contrast, Ikaros nuclear activity and signaling remained unaffected by the drug in vitro and in vivo in late-responder patients and in BTKC481S, BTKKO, and noncanonical NF-κB models. CONCLUSIONS: These data validate phosphoproteomic as a valuable tool for the early detection of response to BTK inhibition in the clinic, and for the determination of drug mechanism of action.


Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Non-Hodgkin , Agammaglobulinaemia Tyrosine Kinase , Animals , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, Non-Hodgkin/drug therapy , Mice , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction
7.
Nutrients ; 13(7)2021 Jul 13.
Article En | MEDLINE | ID: mdl-34371900

Excess caloric intake and body fat accumulation lead to obesity, a complex chronic disease that represents a significant public health problem due to the health-related risk factors. There is growing evidence showing that maternal obesity can program the offspring, which influences neonatal phenotype and predispose offspring to metabolic disorders such as obesity. This increased risk may also be epigenetically transmitted across generations. Thus, there is an imperative need to find effective reprogramming approaches in order to resume normal fetal development. Polyphenols are bioactive compounds found in vegetables and fruits that exert its anti-obesity effect through its powerful anti-oxidant and anti-inflammatory activities. Polyphenol supplementation has been proven to counteract the prejudicial effects of maternal obesity programming on progeny. Indeed, some polyphenols can cross the placenta and protect the fetal predisposition against obesity. The present review summarizes the effects of dietary polyphenols on obesity-induced maternal reprogramming as an offspring anti-obesity approach.


Adipose Tissue/metabolism , Anti-Obesity Agents/administration & dosage , Energy Metabolism , Obesity, Maternal/metabolism , Pediatric Obesity/prevention & control , Polyphenols/administration & dosage , Prenatal Exposure Delayed Effects , Adipose Tissue/physiopathology , Adiposity , Animals , Diet, Healthy , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Humans , Male , Maternal Nutritional Physiological Phenomena , Nutritional Status , Obesity, Maternal/genetics , Obesity, Maternal/physiopathology , Pediatric Obesity/genetics , Pediatric Obesity/metabolism , Pediatric Obesity/physiopathology , Pregnancy , Risk Factors
8.
Cancers (Basel) ; 13(2)2021 Jan 08.
Article En | MEDLINE | ID: mdl-33430146

For years, immunotherapy has been considered a viable and attractive treatment option for patients with cancer. Among the immunotherapy arsenal, the targeting of intratumoral immune cells by immune-checkpoint inhibitory agents has recently revolutionised the treatment of several subtypes of tumours. These approaches, aimed at restoring an effective antitumour immunity, rapidly reached the market thanks to the simultaneous identification of inhibitory signals that dampen an effective antitumor response in a large variety of neoplastic cells and the clinical development of monoclonal antibodies targeting checkpoint receptors. Leading therapies in solid tumours are mainly focused on the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) pathways. These approaches have found a promising testing ground in both Hodgkin lymphoma and non-Hodgkin lymphoma, mainly because, in these diseases, the malignant cells interact with the immune system and commonly provide signals that regulate immune function. Although several trials have already demonstrated evidence of therapeutic activity with some checkpoint inhibitors in lymphoma, many of the immunologic lessons learned from solid tumours may not directly translate to lymphoid malignancies. In this sense, the mechanisms of effective antitumor responses are different between the different lymphoma subtypes, while the reasons for this substantial difference remain partially unknown. This review will discuss the current advances of immune-checkpoint blockade therapies in B-cell lymphoma and build a projection of how the field may evolve in the near future. In particular, we will analyse the current strategies being evaluated both preclinically and clinically, with the aim of fostering the use of immune-checkpoint inhibitors in lymphoma, including combination approaches with chemotherapeutics, biological agents and/or different immunologic therapies.

9.
Front Physiol ; 11: 612268, 2020.
Article En | MEDLINE | ID: mdl-33584335

The World Health Organization declared the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-associated disease (coronavirus disease 2019 - COVID-19) as a pandemic in March 2020. COVID-19 is characterized by cytokine storm, acute respiratory distress syndrome (ARDS), and systemic inflammation-related pathology and already kills more than 1.5 million of people worldwide. Since aged and obese COVID-19 patients exhibit an enhanced inflammatory status, they represent a high-risk cluster for rapidly progressive clinical deterioration. These individuals present comorbid disorders and immunosenescence that may promote viral-induced cytokine storm and expression of molecules acting as virus receptor as angiotensin I converting enzyme 2 (ACE2) and CD26 (dipeptidyl-peptidase 4), resulting in respiratory failure and increased morbidity and mortality. A better knowledge of SARS-CoV-2 infection in inflammatory-associated high-risk population is essential in order to develop the therapies needed to combat or prevent severe COVID-19. Here, we review the pathogenesis and clinical implications of inflammatory disorders and disease markers associated to senescence in COVID-19 patients and the emerging evidence to argue that a high intake of polyphenols may have a protective effect on SARS-CoV-2 illness severity.

10.
Int J Mol Sci ; 19(2)2018 Feb 21.
Article En | MEDLINE | ID: mdl-29466297

Although the classification of breast carcinomas into molecular or immunohistochemical subtypes has contributed to a better categorization of women into different therapeutic regimens, breast cancer nevertheless still progresses or recurs in a remarkable number of patients. Identifying women who would benefit from chemotherapy could potentially increase treatment effectiveness, which has important implications for long-term survival. Metabolomic analyses of fluids and tissues from cancer patients improve our knowledge of the reprogramming of metabolic pathways involved in resistance to chemotherapy. This review evaluates how recent metabolomic approaches have contributed to understanding the relationship between breast cancer and the acquisition of resistance. We focus on the advantages and challenges of cancer treatment and the use of new strategies in clinical care, which helps us comprehend drug resistance and predict responses to treatment.


Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Metabolomics/methods , Breast Neoplasms/classification , Drug Resistance, Neoplasm , Female , Humans , Models, Biological , Treatment Outcome
11.
Sci Rep ; 8(1): 829, 2018 01 16.
Article En | MEDLINE | ID: mdl-29339789

Breast cancer remains the most prevalent cause of cancer mortality in woman worldwide due to the metastatic process and therapy resistance. Resistance against cancer therapy is partially attributed to cancer stem cells (CSCs). These cells arise from epithelial cells undergoing epithelial-to-mesenchymal transition (EMT) and might be responsible for tumor recurrence. In this study, we reported the relevance of miR-155 upregulation in chemoresistant cells associated with EMT. Notably, we found miR-155 induction in exosomes isolated from CSCs and resistant cells, followed by resistant cells' exosome transfer to the recipient sensitive cells. Functionally, miR-155 mimic assay showed an enrichment in miR-155 from exosome concomitant with miR-155 exosome transfer to breast cancer cells. In parallel to these effects, we also observed EMT change in miR-155 transfected cells. The chemoresistance phenotype transfer to sensitive cells and the migration capability was analyzed by MTT and scratch assays and our results suggest that exosomes may intermediate resistance and migration capacity to sensitive cells partly through exosome transfer of miR-155. Taken together, our findings establish the significance of exosome-mediate miR-155 chemoresistance in breast cancer cells, with implications for targeting miR-155 signaling as a possible therapeutic strategy.


Drug Resistance, Neoplasm , Exosomes/metabolism , MicroRNAs/metabolism , Antagomirs/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/genetics , Cadherins/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , Exosomes/genetics , Female , Humans , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Up-Regulation
12.
Mutagenesis ; 32(4): 471-478, 2017 07 01.
Article En | MEDLINE | ID: mdl-28927196

Gastric cancer is the fourth most common type of cancer worldwide. Helicobacter pylori is a well-established risk factor and may cause injuries to genomic integrity through an inefficient DNA repair. This study aimed to examine the influence of polymorphisms in DNA repair enzymes using markers for microsatellite instability (MSI). Polymorphisms of DNA repair enzymes were detected by PCR-RFLP and MSI, by high resolution melt (HRM) analysis. Helicobacter pylori detection and genotyping were accomplished by PCR. MSI was observed in 47.5% of the cases and it was associated with the ERCC1 polymorphic allele, whereas MSI-H was associated with the XRCC3 heterozygous genotype. MSI was more frequent in intestinal gastric cancer (IGC), where it was associated with ERCC1 or RAD51 polymorphic alleles. Also, MSI-H was associated with the XRCC3 heterozygous. In diffuse gastric cancer (DGC), almost all of MGMT polymorphic genotype carriers showed MSI. Helicobacter pylori was positive in 94% of the cases and the most virulent strains were associated with MSI, mainly MSI-H. When the subtypes were considered, these associations were found only in the IGC and associated with more virulent strains. Among the cases with microsatellite instability, IGC showed a correlation between the XPD wild-type and the ERCC1 polymorphic allele, and all of them were infected by the most virulent strains. On the other hand, in DGC, the XPD polymorphic allele was correlated with the XRCC3 wild-type with no prevalence of H.pylori virulence. Our data demonstrated that polymorphisms in repair enzymes can interfere with the efficiency of the repair process, but it differs depending on the histological subtype and H.pylori involvement. Besides nucleotide excision repair, base excision repair and mismatch repair pathway, the homologous recombination are also involved.


Adenocarcinoma/genetics , DNA Repair Enzymes/genetics , Helicobacter Infections/genetics , Microsatellite Instability , Stomach Neoplasms/genetics , Adenocarcinoma/microbiology , Base Sequence , DNA Repair , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide , Stomach Neoplasms/microbiology
13.
Am J Cancer Res ; 6(10): 2129-2139, 2016.
Article En | MEDLINE | ID: mdl-27822407

Breast cancer is the most common and fatal type of cancer in women worldwide due to the metastatic process and resistance to treatment. Despite advances in molecular knowledge, little is known regarding resistance to chemotherapy. One highlighted aspect is the DNA damage response (DDR) pathway that is activated upon genotoxic damage, controlling the cell cycle arrest or DNA repair activation. Recently, studies have showed that cancer stem cells (CSCs) could promote chemoresistance through DDR pathway. Furthermore, it is known that the epithelial-mesenchymal transition (EMT) can generate cells with CSCs characteristics and therefore regulate the chemoresistance process. The exosomes are microvesicles filled with RNAs, proteins and microRNAs (miRNAs) that can be released by many cell types, including tumor cells and CSCs. The exosomes content may be cell-to-cell transferable and it could control a wide range of pathways during tumor development and metastasis. A big challenge for modern medicine is to determine the reasons why patients do not respond to chemotherapy treatments and also guide the most appropriate therapy for each one. Considering that the CSCs are able to stimulate the formation of a more aggressive tumor phenotype with migration and metastasis ability, resistance to treatment and disease recurrence, as well as few studies capable to determine clearly the interaction of breast CSCs with its microenvironment, the present review summarize the possibility that exosomes-mediate miRNAs transfer and regulate chemoresistance in breast tumor cells and CSCs, to clarify the complexity of breast cancer progression and therapy.

14.
Cancer Res ; 76(22): 6735-6746, 2016 11 15.
Article En | MEDLINE | ID: mdl-27569216

Gastric cancer remains one of the leading causes of global cancer mortality due to therapy resistance, with Helicobacter pylori (H. pylori) infection being a major risk factor. In this study, we report the significance of an elevation of the stem cell regulator SOX9 in bacteria-infected human gastritis and cancer samples, paralleling increased levels of TNFα SOX9 elevation was more intense in specimens containing the pathogenically significant cagA+ strains of H. pylori Notably, we found that SOX9 was required for bacteria-induced gastric cancer cell proliferation, increased levels of ß-catenin, and acquisition of stem cell-like properties. Analysis of three large clinical cohorts revealed elevated SOX9 levels in gastric cancer with advanced tumor stage and poor patient survival. Functionally, SOX9 silencing in gastric cancer cells enhanced apoptosis and senescence, concomitantly with a blockade to self-renewal and tumor-initiating capability. Paralleling these effects, we also found SOX9 to mediate cisplatin chemoresistance associated with reduced disease-free survival. Mechanistic interactions between SOX9 and ß-catenin expression suggested the existence of a regulatory role for SOX9 targeting the WNT canonical pathway. Taken together, our findings establish the significance of SOX9 in gastric cancer pathobiology and heterogeneity, with implications for targeting WNT-SOX9 signaling as a rational therapeutic strategy. Cancer Res; 76(22); 6735-46. ©2016 AACR.


SOX9 Transcription Factor/genetics , Stomach Neoplasms/genetics , Wnt Signaling Pathway/genetics , Animals , Disease Progression , Humans , Mice , Mice, Nude , Stomach Neoplasms/pathology , Transfection
15.
Med Oncol ; 32(12): 263, 2015 Dec.
Article En | MEDLINE | ID: mdl-26541769

Inflammation induced by cytokines has been linked to increased production of reactive oxygen species and breast cancer development. The aim of this study was to evaluate the influence COX-2, IL-1ß, IL-8, and TNF-α gene expressions on DNA damage, and investigate a possible link between these factors with neoplastic process. The mRNA expression was measured by real-time PCR, and the DNA damage was analyzed by single-cell gel electrophoresis (comet assay). Our data indicated a significant increase on inflammatory gene expression in tumor tissues compared with normal tissue, and it was also associated with undifferentiated grade patients. Moreover, the results showed that the higher levels of DNA damage were observed among tumor tissue samples. Taken together, the findings presented in this study highlight the relevance of inflammation-induced oxidative stress in breast carcinogenesis.


Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Inflammation/genetics , Oxidative Stress/genetics , Comet Assay , Cytokines/genetics , Cytokines/metabolism , DNA Damage/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Reactive Oxygen Species/metabolism
16.
World J Gastroenterol ; 21(30): 9021-37, 2015 Aug 14.
Article En | MEDLINE | ID: mdl-26290630

Although thousands of DNA damaging events occur in each cell every day, efficient DNA repair pathways have evolved to counteract them. The DNA repair machinery plays a key role in maintaining genomic stability by avoiding the maintenance of mutations. The DNA repair enzymes continuously monitor the chromosomes to correct any damage that is caused by exogenous and endogenous mutagens. If DNA damage in proliferating cells is not repaired because of an inadequate expression of DNA repair genes, it might increase the risk of cancer. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes has been associated with carcinogenesis. Gastric cancer represents the second highest cause of cancer mortality worldwide. The disease develops from the accumulation of several genetic and epigenetic changes during the lifetime. Among the risk factors, Helicobacter pylori (H. pylori) infection is considered the main driving factor to gastric cancer development. Thus, in this review, we summarize the current knowledge of the role of H. pylori infection on the epigenetic regulation of DNA repair machinery in gastric carcinogenesis.


Cell Transformation, Neoplastic/genetics , DNA Damage , DNA Repair , Epigenesis, Genetic , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Stomach Neoplasms/genetics , Animals , DNA Methylation , Gene Expression Regulation, Neoplastic , Helicobacter Infections/complications , Helicobacter pylori/genetics , Host-Pathogen Interactions , Humans , Risk Factors , Stomach Neoplasms/microbiology , Virulence/genetics
17.
Biochim Biophys Acta ; 1840(1): 199-208, 2014 Jan.
Article En | MEDLINE | ID: mdl-24076233

BACKGROUND: Pulmonary emphysema is characterized by the loss of lung architecture. Our hypothesis is that the inhibition of 5-lipoxygenase (5-LO) production may be an important strategy to reduce inflammation, oxidative stress, and metalloproteinases in lung tissue resulting from cigarette smoke (CS)-induced emphysema. METHODS: 5-LO knockout (129S2-Alox5(tm1Fun)/J) and wild-type (WT) mice (129S2/SvPas) were exposed to CS for 60days. Mice exposed to ambient air were used as Controls. Oxidative, inflammatory, and proteolytic markers were analyzed. RESULTS: The alveolar diameter was decreased in CS 5-LO(-/-) mice when compared with the WT CS group. The CS exposure resulted in less pronounced pulmonary inflammation in the CS 5-LO(-/-) group. The CS 5-LO(-/-) group showed leukotriene B4 values comparable to those of the Control group. The expression of MMP-9 was decreased in the CS 5-LO(-/-) group when compared with the CS WT group. The expression of superoxide dismutase, catalase, and glutathione peroxidase were decreased in the CS 5-LO(-/-) group when compared with the Control group. The protein expression of nuclear factor (erythroid-derived 2)-like 2 was reduced in the CS 5-LO(-/-) group when compared to the CS WT group. CONCLUSION: In conclusion, we show for the first time that 5-LO deficiency protects 129S2 mice against emphysema caused by CS. We suggest that the main mechanism of pathogenesis in this model involves the imbalance between proteases and antiproteases, particularly the association between MMP-9 and TIMP-1. General significance This study demonstrates the influence of 5-LO mediated oxidative stress, inflammation, and proteolytic markers in CS exposed mice.


Arachidonate 5-Lipoxygenase/physiology , Matrix Metalloproteinase 9/metabolism , Oxidative Stress , Pneumonia/prevention & control , Pulmonary Emphysema/prevention & control , Smoke/adverse effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Animals , Blotting, Western , Bronchoalveolar Lavage , Enzyme-Linked Immunosorbent Assay , Male , Matrix Metalloproteinase 9/genetics , Mice , Mice, Knockout , Oxidation-Reduction , Pneumonia/genetics , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/genetics , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Respiratory Function Tests , Reverse Transcriptase Polymerase Chain Reaction , Tissue Inhibitor of Metalloproteinase-1/genetics
18.
Arch Biochem Biophys ; 537(1): 72-81, 2013 Sep 01.
Article En | MEDLINE | ID: mdl-23831508

Our aim was to investigate CCR2 and HMGB1 involvement in a murine model of endotoxic shock. We used C57BL/6 CCR2 knockout (KO) mice and wild-type (WT) littermates to establish an optimal dose of LPS. CCR2 KO mice survived more frequently than WT mice after 80, 40 and 20 mg/kg of LPS i.p. Inflammation and redox markers were high in WT mice than in CCR2 KO mice. HMGB1 expression was reduced in CCR2 KO mice in parallel to ERK 1/2 activation. Therefore, we used glycyrrhizic acid (50 mg/kg), an HMGB1 inhibitor in WT mice injected with LPS, and mortality was fully abolished. Thus, drugs targeting CCR2 and HMGB1 could represent future resources for sepsis treatment.


Glycyrrhizic Acid/administration & dosage , HMGB1 Protein/metabolism , Lipopolysaccharides , Receptors, CCR2/metabolism , Shock, Septic/chemically induced , Shock, Septic/metabolism , Signal Transduction/drug effects , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR2/antagonists & inhibitors , Survival Rate
19.
Int Immunopharmacol ; 17(1): 57-64, 2013 Sep.
Article En | MEDLINE | ID: mdl-23747588

Statins are standard therapy for the treatment of lipid disorders, and the field of redox biology accepts that statins have antioxidant properties. Our aim in this report was to consider the pleiotropic effects of atorvastatin, pravastatin and simvastatin administered prior to endotoxin-induced acute lung injury. Male mice were divided into 5 groups and intraperitoneally injected with LPS (10 mg/kg), LPS plus atorvastatin (10 mg/kg/day; A + LPS group), LPS plus pravastatin (5 mg/kg/day; P + LPS group) or LPS plus simvastatin (20 mg/kg/day; S + LPS group). The control group received saline. All mice were sacrificed one day later. There were fewer leukocytes in the P + LPS and S + LPS groups than in the LPS group. MCP-1 cytokine levels were lower in the P + LPS group, while IL-6 levels were lower in the P + LPS and S + LPS groups. TNF-α was lower in all statin-treated groups. Levels of redox markers (superoxide dismutase and catalase) were lower in the A + LPS group (p < 0.01). The extent of lipid peroxidation (malondialdehyde and hydroperoxides) was reduced in all statin-treated groups (p < 0.05). Myeloperoxidase was lower in the P + LPS group (p < 0.01). Elastance levels were significantly greater in the LPS group compared to the statin groups. Our results suggest that atorvastatin and pravastatin but not simvastatin exhibit anti-inflammatory and antioxidant activity in endotoxin-induced acute lung injury.


Endotoxins/toxicity , Heptanoic Acids/pharmacology , Inflammation/chemically induced , Lung Injury/chemically induced , Pravastatin/pharmacology , Pyrroles/pharmacology , Simvastatin/pharmacology , Animals , Atorvastatin , Biomarkers , Heptanoic Acids/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation/drug therapy , Lung Injury/prevention & control , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Pravastatin/administration & dosage , Pyrroles/administration & dosage , Simvastatin/administration & dosage
20.
Food Chem ; 141(2): 809-15, 2013 Nov 15.
Article En | MEDLINE | ID: mdl-23790851

The aim of this study was to evaluate the effects of yerba mate extract and its principal bioactive compounds on adipogenesis. The anti-adipogenic effects of yerba mate, chlorogenic acid, quercetin and rutin were evaluated in 3T3-L1 cells using a PCR array. The results obtained in vitro were validated in vivo in a high-fat diet-induced model of obesity. The in vitro and in vivo results demonstrated that yerba mate extract down-regulated the expression of genes that regulate adipogenesis, such as Creb-1and C/EBPα, and the extract up-regulated the expression of genes related to the inhibition of adipogenesis, including Dlk1, Gata2, Gata3, Klf2, Lrp5, Pparγ2, Sfrp1, Tcf7l2, Wnt10b, and Wnt3a. In summary, it was demonstrated that yerba mate and its bioactive compounds regulate the expression of genes related to in vitro adipogenesis. Furthermore, yerba mate might regulate adipogenesis through the Wnt pathway.


Adipogenesis/drug effects , Ilex paraguariensis/chemistry , Obesity/drug therapy , Plant Extracts/administration & dosage , 3T3-L1 Cells , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Chlorogenic Acid/administration & dosage , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Regulation/drug effects , Humans , Male , Mice , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , Quercetin/administration & dosage , Rutin/administration & dosage
...