Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Elife ; 122024 May 07.
Article En | MEDLINE | ID: mdl-38712823

To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Single-Domain Antibodies/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Humans , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Antibodies, Neutralizing/immunology , Animals
2.
bioRxiv ; 2024 Jan 29.
Article En | MEDLINE | ID: mdl-37503298

To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast, Fridy et al. 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

3.
Elife ; 102021 12 07.
Article En | MEDLINE | ID: mdl-34874007

The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.


COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , Camelids, New World/immunology , Epitopes/genetics , Epitopes/immunology , HEK293 Cells , Humans , Male , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article En | MEDLINE | ID: mdl-34453000

Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic ß-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic ß-Cell Consortium.


Models, Biological , Bayes Theorem , Computer Simulation , Humans , Linear Models
5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article En | MEDLINE | ID: mdl-33941673

Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.


Cell Cycle Proteins/chemistry , Multiprotein Complexes/chemistry , Protein Domains , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Binding Sites , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Cryoelectron Microscopy/methods , Mass Spectrometry/methods , Models, Molecular , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Protein Binding , Saccharomyces cerevisiae Proteins/metabolism , Sumoylation
6.
bioRxiv ; 2021 Apr 10.
Article En | MEDLINE | ID: mdl-33851164

Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.

7.
J Chem Phys ; 151(4): 044111, 2019 Jul 28.
Article En | MEDLINE | ID: mdl-31370551

Coarse-grained (CG) protein models in the structural biology literature have improved over the years from being simple tools to understand general folding and aggregation driving forces to capturing detailed structures achieved by actual folding sequences. Here, we ask whether such models can be developed systematically from recent advances in bottom-up coarse-graining methods without relying on bioinformatic data (e.g., protein data bank statistics). We use relative entropy coarse-graining to develop a hybrid CG but Go¯-like CG peptide model, hypothesizing that the landscape of proteinlike folds is encoded by the backbone interactions, while the sidechain interactions define which of these structures globally minimizes the free energy in a unique native fold. To construct a model capable of capturing varied secondary structures, we use a new extended ensemble relative entropy method to coarse-grain based on multiple reference atomistic simulations of short polypeptides with varied α and ß character. Subsequently, we assess the CG model as a putative protein backbone forcefield by combining it with sidechain interactions based on native contacts but not incorporating native distances explicitly, unlike standard Go¯ models. We test the model's ability to fold a range of proteins and find that it achieves high accuracy (∼2 Å root mean square deviation resolution for both short sequences and large globular proteins), suggesting the strong role that backbone conformational preferences play in defining the fold landscape. This model can be systematically extended to non-natural amino acids and nonprotein polymers and sets the stage for extensions to non-Go¯ models with sequence-specific sidechain interactions.


Grain Proteins/chemistry , Models, Molecular
8.
J Chem Theory Comput ; 15(5): 2881-2895, 2019 May 14.
Article En | MEDLINE | ID: mdl-30995034

The application of bottom-up coarse grained (CG) models to study the equilibrium mixing behavior of liquids is rather challenging, since these models can be significantly influenced by the density or the concentration of the state chosen during parametrization. This dependency leads to low transferability in density/concentration space and has been one of the major limitations in bottom-up coarse graining. Recent approaches proposed to tackle this shortcoming range from the addition of thermodynamic constraints, to an extended ensemble parametrization, to the addition of supplementary terms to the system's Hamiltonian. To study fluid phase equilibria with bottom-up CG models, the application of local density (LD) potentials appears to be a promising approach, as shown in previous work by Sanyal and Shell [T. Sanyal, M. S. Shell, J. Phys. Chem. B, 2018, 122, 5678]. Here, we want to further explore this method and test its ability to model a system which contains structural inhomogeneities only on the molecular scale, namely, solutions of methanol and water. We find that a water-water LD potential improves the transferability of an implicit-methanol CG model toward high water concentration. Conversely, a methanol-methanol LD potential does not significantly improve the transferability of an implicit-water CG model toward high methanol concentration. These differences appear due to the presence of cooperative interactions in water at high concentrations that the LD potentials can capture. In addition, we compare two different approaches to derive our CG models, namely, relative entropy optimization and the Inverse Monte Carlo method, and formally demonstrate under which analytical and numerical assumptions these two methods yield equivalent results.

10.
J Chem Phys ; 149(9): 094901, 2018 Sep 07.
Article En | MEDLINE | ID: mdl-30195293

Colloidal crystals are often prepared by evaporation from solution, and there is considerable interest to link the processing conditions to the crystal morphology and quality. Here, we study the evaporation-induced assembly of colloidal crystals using massive-scale nonequilibrium molecular dynamics simulations. We apply a recently developed machine-learning technique to characterize the assembling crystal structures with unprecedented microscopic detail. In agreement with previous experiments and simulations, faster evaporation rates lead to earlier onset of crystallization and more disordered surface structures. Surprisingly, we find that collective rearrangements of the bulk crystal during later stages of drying reduce the influence of the initial surface structure, and the final morphology is essentially independent of the evaporation rate. Our structural analysis reveals that the crystallization process is well-described by two time scales, the film drying time and the crystal growth time, with the latter having an unexpected dependence on the evaporation rate due to equilibrium thermodynamic effects at high colloid concentrations. These two time scales may be leveraged to control the relative influence of equilibrium and nonequilibrium growth mechanisms, suggesting a route to rapidly process colloidal crystals while also removing defects. Our analysis additionally reveals that solvent-mediated interactions play a critical role in the crystallization kinetics and that commonly used implicit-solvent models do not faithfully resolve nonequilibrium processes such as drying.

11.
J Phys Chem B ; 122(21): 5678-5693, 2018 05 31.
Article En | MEDLINE | ID: mdl-29466859

Bottom-up coarse-grained (CG) models are now regularly pursued to enable large length and time scale molecular simulations of complex, often macromolecular systems. However, predicting fluid phase equilibria using such models remains fundamentally challenging. A major problem stems from the typically low transferability of CG models beyond the densities and/or compositions at which they are parametrized, which is necessary if they are to describe distinct structural and thermodynamic properties unique to each phase. CG model transferability is compounded by the representation of the inherently multibody coarse interactions using pair potentials that neglect higher order effects. Here, we propose to construct transferable single site CG models of liquid mixtures by supplementing traditional CG pair interactions with local density potentials, which constitute a computationally inexpensive mean-field approach to describe many-body effects, in that site energies are modulated by the local solution environment. To illustrate the approach, we use intra- and interspecies local density potentials to develop CG models of benzene-water solutions that show impressive transferability in structural metrics (pair correlation functions, density profiles) throughout composition space, in contrast to pair-only CG representations. While further refinement may be necessary to represent more complex thermodynamic properties, like the liquid-liquid interfacial tension, the generality and improvement offered by the local density approach are highly encouraging for enabling complex phase equilibrium modeling using CG models.

12.
J Chem Phys ; 145(3): 034109, 2016 Jul 21.
Article En | MEDLINE | ID: mdl-27448876

Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment.

13.
Math Biosci ; 241(2): 167-80, 2013 Feb.
Article En | MEDLINE | ID: mdl-23201463

Methemoglobinemia is a disease that results from abnormally high levels of methemoglobin (MetHb) in the red blood cell (RBC), which is caused by simultaneous uptake of oxygen (O(2)) and nitric oxide (NO) in the human lungs. MetHb is produced in the RBC by irreversible NO-induced oxidation of the oxygen carrying ferrous ion (Fe(2+)) present in the heme group of the hemoglobin (Hb) molecule to its non-oxygen binding ferric state (Fe(3+)). This paper studies the role of NO in the pathophysiology of methemoglobinemia and presents a multiscale quantitative analysis of the relation between the levels of NO inhaled by the patient and the hypoxemia resulting from the disease. Reactions of NO occurring in the RBC with both Hb and oxyhemoglobin are considered in conjunction with the usual reaction between oxygen and Hb to form oxyhemoglobin. Our dynamic simulations of NO and O(2) uptake in the RBC (micro scale), alveolar capillary (meso scale) and the entire lung (macro scale) under continuous, simultaneous exposure to both gases, reveal that NO uptake competes with the reactive uptake of O(2), thus suppressing the latter and causing hypoxemia. We also find that the mass transfer resistances increase from micro through meso to macro scales, thus decreasing O(2) saturation as one goes up the scales from the cellular to the organ (lung) level. We show that NO levels of 203 ppm or higher while breathing in room air may be considered to be fatal for methemoglobinemia patients since it causes severe hypoxemia by reducing the O(2) saturation below a critical value of 88%, at which Long Term Oxygen Therapy (LTOT) becomes necessary.


Erythrocytes/metabolism , Methemoglobinemia/blood , Models, Biological , Oxygen/blood , Computer Simulation , Humans , Nitric Oxide/blood , Oxidation-Reduction
...