Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769094

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes gastroenteritis and Hemolytic Uremic Syndrome. Cattle are the main animal reservoir, excreting the bacteria in their feces and contaminating the environment. In addition, meat can be contaminated by releasing the intestinal content during slaughtering. Here, we evaluated the safety and immunogenicity of a vaccine candidate against STEC that was formulated with two chimeric proteins (Chi1 and Chi2), which contain epitopes of the OmpT, Cah and Hes proteins. Thirty pregnant cows in their third trimester of gestation were included and distributed into six groups (n = 5 per group): four groups were administered intramuscularly with three doses of the formulation containing 40 µg or 100 µg of each protein plus the Quil-A or Montanide™ Gel adjuvants, while two control groups were administered with placebos. No local or systemic adverse effects were observed during the study, and hematological parameters and values of blood biochemical indicators were similar among all groups. Furthermore, all vaccine formulations triggered systemic anti-Chi1/Chi2 IgG antibody levels that were significantly higher than the control groups. However, specific IgA levels were generally low and without significant differences among groups. Notably, anti-Chi1/Chi2 IgG antibody levels in the serum of newborn calves fed with colostrum from their immunized dams were significantly higher compared to newborn calves fed with colostrum from control cows, suggesting a passive immunization through colostrum. These results demonstrate that this vaccine is safe and immunogenic when applied to pregnant cows during the third trimester of gestation.


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Escherichia coli Shiga-Toxigénica , Vacunas de Subunidad , Animales , Bovinos , Femenino , Embarazo , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Inmunización Pasiva , Inmunoglobulina G , Vacunas de Subunidad/efectos adversos
2.
Front Endocrinol (Lausanne) ; 13: 945736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957815

RESUMEN

The presence of Escherichia coli in the vaginal microbiome has been associated with pregnancy complications. In previous works, we demonstrated that Shiga toxin-producing Escherichia coli (STEC) can produce abortion and premature delivery in rats and that Shiga toxin type 2 (Stx2) can impair human trophoblast cell lines. The hypothesis of this work was that STEC may colonize the lower female reproductive tract and be responsible for adverse pregnancy outcomes. Thus, the aim of this work was to evaluate the presence and prevalence of virulence factor genes from STEC in the endocervix of asymptomatic pregnant women. For that purpose, endocervical swabs were collected from pregnant women during their prenatal examination. Swab samples were enriched in a differential medium to select Enterobacteria. Then, positive samples were analyzed by PCR to detect genes characteristic of Escherichia sp. (such as uidA and yaiO), genes specific for portions of the rfb (O-antigen-encoding) regions of STEC O157 (rfbO157), and STEC virulence factor genes (such as stx1, stx2, eae, lpfAO113, hcpA, iha, sab, subAB). The cytotoxic effects of stx2-positive supernatants from E. coli recovered from the endocervix were evaluated in Vero cells. Our results showed that 11.7% of the endocervical samples were positive for E. coli. Additionally, we found samples positive for stx2 and other virulence factors for STEC. The bacterial supernatant from an isolate identified as E. coli O113:NT, carrying the stx2 gene, exhibited cytotoxic activity in Vero, Swan 71 and Hela cells. Our results open a new perspective regarding the presence of STEC during pregnancy.


Asunto(s)
Escherichia coli O157 , Proteínas de Escherichia coli , Resultado del Embarazo , Toxina Shiga II , Escherichia coli Shiga-Toxigénica , Factores de Virulencia , Animales , Cuello del Útero/microbiología , Chlorocebus aethiops , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Células HeLa , Humanos , Embarazo , Resultado del Embarazo/genética , Mujeres Embarazadas , Ratas , Factores de Riesgo , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/metabolismo , Células Vero , Factores de Virulencia/genética
3.
Rev Argent Microbiol ; 54(3): 215-219, 2022.
Artículo en Español | MEDLINE | ID: mdl-34556377

RESUMEN

The aim of this work was to evaluate the hygienic-sanitary conditions of butcher shops in Tandil, Buenos Aires Province, by estimating the risk based on good manufacturing and hygiene practices, through surveys of the establishments. The analysis was performed using a scale of 1-100, and classifying them as high risk (0-40), moderate risk (41-70) or low risk (71-100). The presence of Salmonella spp., Staphylococcus aureus and Shiga toxin-producing Escherichia coli (STEC) from both, ground beef and environmental samples such as countertop, cleaver, mincer and butcher's hands, taken at butcher shops was also evaluated. Sampling was performed only once and immediately refrigerated and transported to the laboratory for analysis. All butcher shops evaluated (100) were classified as "low risk" with good hygienic-sanitary conditions. However, 75% of the ground beef samples analyzed did not meet at least one of the microbiological criteria established in the Código Alimentario Argentino [Argentine Food Code], article 255. We propose to establish a strategy to identify deviations and implement a plan for continuous improvement in butcher shops of Tandil city.


Asunto(s)
Escherichia coli Shiga-Toxigénica , Animales , Argentina , Bovinos , Microbiología de Alimentos , Carne/microbiología , Salmonella , Staphylococcus aureus
4.
Open Vet J ; 9(1): 65-73, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31086769

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is the most common and global cause of neonatal calf diarrhea, but there is a little information regarding calf ETEC strains in Argentina. In this study, five ETEC isolates from diarrheic dairy calves (2-10 d old) from Buenos Aires and Cordoba, Argentina were characterized on the basis of virulence gene (VG) pattern, O:H serotyping, hemolytic phenotype, phylogenetic group affiliation, antimicrobial (AM) resistance profile, and presence of integron class 1 and 2. The five isolates were examined by polymerase chain reaction (PCR) for the presence of 18 bovine VGs and showed the following genotypes: F5+/F41+/sta+ (D242), F5+/sta+ (D158), F5+/sta+ (D157), F5+ (D151-9), and F5+/iucD+ (D151-5). These VGs confer pathogenic potential and most of them are associated with the ETEC pathotype. The five isolates showed a non-hemolytic phenotype, belonged to five different serotypes: O101:H-, O141:H-, O60:H-, ONT:H10, and ONT:H-, and were assigned to the phylogenetic group A by the quadruplex Clermont PCR method. The AM resistance of the three isolates D242, D157, and D151-5 was determined by agar disk diffusion method for 24 AMs and they exhibited a multi-resistance phenotype (resistance to four different AM classes: Cephalosporins, Penicillins, Macrolides, and Ansamycins). In addition, class 1 integrons were found in the isolate D151-5 containing the dfrA17-aadA5 gene cassette and in the bovine ETEC reference strain FV10191 containing the dfrA1-aadA1 gene cassette. The present study revealed for the first time the occurrence of multi-resistant ETEC associated with neonatal diarrhea in dairy calves in Argentina. This finding may be used for diagnostic and therapeutic purposes.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Farmacorresistencia Bacteriana/genética , Escherichia coli Enterotoxigénica/fisiología , Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/veterinaria , Animales , Animales Recién Nacidos , Antibacterianos/farmacología , Argentina , Bovinos , Escherichia coli Enterotoxigénica/efectos de los fármacos , Escherichia coli Enterotoxigénica/genética , Infecciones por Escherichia coli/microbiología , Integrones/efectos de los fármacos , Integrones/genética , Fenotipo , Serotipificación/veterinaria , Virulencia
5.
Int J Food Microbiol ; 261: 57-61, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28992515

RESUMEN

The aim of this study was to investigate the prevalence of diarrheagenic E. coli strains in vegetables from the humid Pampa region, Argentina, and to determine the occurrence of serotypes and virulence genes in the isolates. A total of 373 fresh vegetable samples obtained from 41 different geographical points were examined. E. coli was detected in 38.6% of the samples. Ten isolates could be obtained from 14 samples presumptively positive for diarrheagenic E. coli: 8 were identified as atypical Enteropathogenic E. coli (aEPEC) and 2 as Verocytotoxigenic E. coli (VTEC). Lettuce and beet were the vegetables most frequently contaminated with pathogenic E. coli. The isolates belonged to serotypes O1:H7, O28:H19, O39:H40, O86:H31, O132:H8, O139:H20, O178:H7 and O178:H19, some of which reportedly have caused human illness, and one isolate resulted non typeable. Taking into account the distribution of 16 nle genes, 7 profiles were detected. On the other hand, all tested isolates harbored the gene encoding for the adhesin HcpA. Other adhesion related genes were also identified: ecpA and elfA were detected in 90%, lpfA0113 in 60%, and ehaA in 50% of the isolates meanwhile ihaA was only observed in O178:H19 isolate. This VTEC isolate harbored, also, Cdt-V toxin and megaplasmid encoding genes such as espP, subA and epeA and exhibited a strong cytotoxic effect. These data is the first molecular E. coli report that confirms the presence of E. coli pathotypes circulating among vegetables in Argentina. Genetic characterization showed that in addition to eae or vtx genes, isolates obtained from vegetables harbored genes encoding other toxins, adhesins, and components related to the type III secretion system that could contribute to their virulence. In conclusion, this research shows that vegetables in Argentina may be the source of VTEC and EPEC infections in the community and therefore, they should be considered as vehicles for transmission of these potentially pathogenic bacteria.


Asunto(s)
Diarrea/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/aislamiento & purificación , Contaminación de Alimentos/análisis , Verduras/microbiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Argentina , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Serogrupo , Serotipificación , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
PLoS One ; 12(8): e0183248, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28829794

RESUMEN

Several foods contaminated with Shiga toxin-producing Escherichia coli (STEC) are associated with human diseases. Some countries have established microbiological criteria for non-O157 STEC, thus, the absence of serogroups O26, O45, O103, O104, O111, O121, and O145 in sprouts from the European Union or ground beef and beef trimmings from the United States is mandatory. While in Argentina screening for O26, O103, O111, O145 and O121 in ground beef, ready-to-eat food, sausages and vegetables is mandatory, other countries have zero-tolerance for all STEC in chilled beef. The aim of this study was to provide data on the prevalence of non-O157 STEC isolated from beef processed in eight Argentinean cattle slaughterhouses producing beef for export and local markets, and to know the non-O157 STEC profiles through strain characterization and genotypic analysis. Samples (n = 15,965) from 3,205 beef carcasses, 9,570 cuts and 3,190 trimmings collected between March and September 2014 were processed in pools of five samples each. Pools of samples (n = 3,193) from 641 carcasses, 1,914 cuts and 638 trimming were analyzed for non-O157 STEC isolation according to ISO/CEN 13136:2012. Of these, 37 pools of carcasses (5.8%), 111 pools of cuts (5.8%) and 45 pools of trimmings (7.0%) were positive for non-O157 STEC. STEC strains (n = 200) were isolated from 193 pools of samples. The most prevalent serotypes were O174:H21, O185:H7, O8:H19, O178:H19 and O130:H11, and the most prevalent genotypes were stx2c(vh-b) and stx2a/saa/ehxA. O103:H21 strain was eae-positive and one O178:H19 strain was aggR/aaiC-positive. The prevalence of non-O157 STEC in beef carcasses reported here was low. None of the non-O157 STEC strains isolated corresponded to the non-O157 STEC serotypes and virulence profiles isolated from human cases in Argentina in the same study period. The application of microbiological criteria for each foodstuff should be determined by risk analysis in order to have a stringent monitoring system. Likewise, zero-tolerance intervention measures should be applied in beef, together with GMP and HACCP. Further, collaborative efforts for risk assessment, management and communication are extremely important to improve the safety of foodstuffs.


Asunto(s)
Mataderos , Carne/microbiología , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Animales , Argentina , Bovinos , Electroforesis en Gel de Campo Pulsado , Genes Bacterianos , Escherichia coli Shiga-Toxigénica/química , Escherichia coli Shiga-Toxigénica/genética
7.
Rev. argent. microbiol ; 48(4): 325-328, dic. 2016. tab
Artículo en Inglés | LILACS | ID: biblio-1041769

RESUMEN

Shigatoxigenic Escherichia coli (STEC) is a foodborne pathogen that causes hemolytic uremic syndrome (HUS) and the consumption of chicken products has been related to some HUS cases. We performed a non-selective isolation and characterization of STEC strains from retail chicken products. STEC isolates were characterized according to the presence of stx1, stx2, eae, saa and ehxA; stx subtypes and serotypes. Most of them carried stx2, showing subtypes associated with severe human disease. Although reported in other avian species, the stx2f subtype was not detected. The isolates corresponded to different serotypes and some of them, such as O22:H8, O113:H21, O130:H11, O171:H2 and O178:H19, have also been identified among STEC isolated from patients suffering from diarrhea, hemorrhagic colitis, HUS, as well as from cattle. Considering the virulence profiles and serotypes identified, our results indicate that raw chicken products, especially hamburgers sold at butcheries, can be vehicles for high-risk STEC strains.


Escherichia coli productor de toxina de Shiga (STEC) es un patógeno transmitido por alimentos que causa el síndrome urémico hemolítico (SUH). Algunos casos de SUH están relacionados con el consumo de productos de pollo. Se realizó el aislamiento no selectivo y la caracterización de cepas STEC provenientes de productos de pollo atendiendo a la presencia de stx1, stx2, eae, saa y ehxA, subtipos de stx y serotipos. La mayoría de los aislamientos portaba stx2 y subtipos de stx asociados con enfermedades graves en humanos. Aunque se ha detectado en otras especies aviares, el subtipo stx2f no se encontró. Se detectaron diferentes serotipos, entre ellos O22:H8, O113:H21, O130:H11, O171:H2 y O178:H19, también identificados como STEC aislados de pacientes con diarrea, colitis hemorrágica y SUH, y de ganado bovino. Teniendo en cuenta los perfiles de virulencia y los serotipos identificados, nuestros resultados indican que los productos de pollo crudos, especialmente las hamburguesas que se venden en las carnicerías, pueden ser vehículos de cepas STEC de alto riesgo.


Asunto(s)
Animales , Virulencia , Toxina Shiga/clasificación , Toxina Shiga/efectos adversos , Escherichia coli/clasificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Pollos/microbiología , Síndrome Hemolítico-Urémico/prevención & control
8.
Rev Argent Microbiol ; 48(4): 325-328, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27667362

RESUMEN

Shigatoxigenic Escherichia coli (STEC) is a foodborne pathogen that causes hemolytic uremic syndrome (HUS) and the consumption of chicken products has been related to some HUS cases. We performed a non-selective isolation and characterization of STEC strains from retail chicken products. STEC isolates were characterized according to the presence of stx1, stx2, eae, saa and ehxA; stx subtypes and serotypes. Most of them carried stx2, showing subtypes associated with severe human disease. Although reported in other avian species, the stx2f subtype was not detected. The isolates corresponded to different serotypes and some of them, such as O22:H8, O113:H21, O130:H11, O171:H2 and O178:H19, have also been identified among STEC isolated from patients suffering from diarrhea, hemorrhagic colitis, HUS, as well as from cattle. Considering the virulence profiles and serotypes identified, our results indicate that raw chicken products, especially hamburgers sold at butcheries, can be vehicles for high-risk STEC strains.


Asunto(s)
Microbiología de Alimentos , Genes Bacterianos , Productos Avícolas/microbiología , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Animales , Argentina , Técnicas de Tipificación Bacteriana , Pollos/microbiología , Proteínas de Escherichia coli/genética , Serotipificación , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/patogenicidad , Virulencia
9.
PLoS One ; 11(9): e0162635, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27618439

RESUMEN

Foodborne pathogens can cause acute and chronic diseases and produce a wide range of symptoms. Since the consumption of ground beef is a risk factor for infections with some bacterial pathogens, we performed a comprehensive evaluation of butcher shops, implemented improvement actions for both butcher shops and consumers, and verified the impact of those actions implemented. A comprehensive evaluation was made and risk was quantified on a 1-100 scale as high-risk (1-40), moderate-risk (41-70) or low-risk (71-100). A total of 172 raw ground beef and 672 environmental samples were collected from 86 butcher shops during the evaluation (2010-2011) and verification (2013) stages of the study. Ground beef samples were analyzed for mesophilic aerobic organisms, Escherichia coli and coagulase-positive Staphylococcus aureus enumeration. Salmonella spp., E. coli O157:H7, non-O157 Shiga toxin-producing E. coli (STEC), and Listeria monocytogenes were detected and isolated from all samples. Risk quantification resulted in 43 (50.0%) high-risk, 34 (39.5%) moderate-risk, and nine (10.5%) low-risk butcher shops. Training sessions for 498 handlers and 4,506 consumers were held. Re-evaluation by risk quantification and microbiological analyses resulted in 19 (22.1%) high-risk, 42 (48.8%) moderate-risk and 25 (29.1%) low-risk butcher shops. The count of indicator microorganisms decreased with respect to the 2010-2011 period. After the implementation of improvement actions, the presence of L. monocytogenes, E. coli O157:H7 and stx genes in ground beef decreased. Salmonella spp. was isolated from 10 (11.6%) ground beef samples, without detecting statistically significant differences between both study periods (evaluation and verification). The percentage of pathogens in environmental samples was reduced in the verification period (Salmonella spp., 1.5%; L. monocytogenes, 10.7%; E. coli O157:H7, 0.6%; non-O157 STEC, 6.8%). Risk quantification was useful to identify those relevant facts in butcher shops. The reduction of contamination in ground beef and the environment was possible after training handlers based on the problems identified in their own butcher shops. Our results confirm the feasibility of implementing a comprehensive risk management program in butcher shops, and the importance of information campaigns targeting consumers. Further collaborative efforts would be necessary to improve foodstuffs safety at retail level and at home.


Asunto(s)
Mataderos/normas , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/prevención & control , Mejoramiento de la Calidad , Argentina , Bacterias/aislamiento & purificación , Recuento de Colonia Microbiana , Humanos , Riesgo
10.
Front Microbiol ; 7: 93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26903972

RESUMEN

Pigs are important reservoirs of Shiga toxin-producing Escherichia coli (STEC). The entrance of these strains into the food chain implies a risk to consumers because of the severity of hemolytic uremic syndrome. This study reports the prevalence and characterization of STEC throughout the pork production chain. From 764 samples, 31 (4.05%) were stx positive by PCR screening. At farms, 2.86% of samples were stx positive; at slaughter, 4.08% of carcasses were stx positive and at boning rooms, 6% of samples were stx positive. These percentages decreased in pork meat ready for sale at sales markets (4.59%). From positive samples, 50 isolates could be characterized. At farms 37.5% of the isolates carried stx1/stx2 genes, 37.5% possessed stx2e and 25%, carried only stx2. At slaughter we detected 50% of isolates positive for stx2, 33% for stx2e, and 16% for stx1/stx2. At boning rooms 59% of the isolates carried stx1/stx2, 14% stx2e, and 5% stx1/stx2/stx2e. At retail markets 66% of isolates were positive for stx2, 17% stx2e, and 17% stx1/stx2. For the other virulence factors, ehxA and saa were not detected and eae gene was detected in 12% of the isolates. Concerning putative adhesins, agn43 was detected in 72%, ehaA in 26%, aida in 8%, and iha in 6% of isolates. The strains were typed into 14 E. coli O groups (O1, O2, O8, O15, O20, O35, O69, O78, O91, O121, O138, O142, O157, O180) and 10 H groups (H9, H10, H16, H21, H26, H29, H30, H32, H45, H46). This study reports the prevalence and characterization of STEC strains through the chain pork suggesting the vertical transmission. STEC contamination originates in the farms and is transferred from pigs to carcasses in the slaughter process and increase in meat pork at boning rooms and sales markets. These results highlight the need to implement an integrated STEC control system based on good management practices on the farm and critical control point systems in the food chain.

11.
Foodborne Pathog Dis ; 12(8): 704-11, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26217917

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for neonatal diarrhea, postweaning diarrhea, and edema disease in pigs. Although it can be harmless, ETEC is also present in the intestines of other animal species and humans, causing occasional diarrhea outbreaks. The evaluation of this pathogen's presence in food sources is becoming an increasingly important issue in human health. In order to determine the prevalence of ETEC in nondiarrheic pigs, 990 animals from 11 pig farms were sampled. Using end-time polymerase chain reaction (PCR), eltA, estI genes, or both, were detected in 150 (15.2%) animals. From the positive samples, 40 (26.6%) ETEC strains were isolated, showing 19 antibiotic-resistance patterns; 52.5% of these strains had multiple antibiotic resistances, and 17.5% carried the intI2 gene. The most prevalent genotypes were rfb(O157)/estII/aidA (32.5%) and estI/estII (25.0%). The estII gene was identified most frequently (97.5%), followed by estI (37.5%), astA (20.0%), and eltA (12.5%). The genes coding the fimbriae F5, F6, and F18 were detected in three single isolates. The aidA gene was detected in 20 ETEC strains associated with the estII gene. Among the isolated ETEC strains, stx(2e)/estI, stx(2e)/estI/estII, and stx(2e)/estI/estII/intI2 genotypes were identified. The ETEC belonged to 12 different serogroups; 37.5% of them belonged to serotype O157:H19. Isolates were grouped by enterobacterial repetitive intergenic consensus-PCR into 5 clusters with 100.0% similarity. In this study, we demonstrated that numerous ETEC genotypes cohabit and circulate in swine populations without clinical manifestation of neonatal diarrhea, postweaning diarrhea, or edema disease in different production stages. The information generated is important not only for diagnostic and epidemiological purposes, but also for understanding the dynamics and ecology of ETEC in pigs in different production stages that can be potentially transmitted to humans from food animals.


Asunto(s)
Antiinfecciosos/análisis , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli Enterotoxigénica/aislamiento & purificación , Genes Bacterianos , Carne Roja/microbiología , Animales , Antiinfecciosos/farmacología , ADN Bacteriano/genética , Diarrea/microbiología , Diarrea/veterinaria , Edematosis Porcina/microbiología , Escherichia coli Enterotoxigénica/efectos de los fármacos , Escherichia coli Enterotoxigénica/genética , Proteínas de Escherichia coli/genética , Contaminación de Alimentos , Microbiología de Alimentos , Técnicas de Genotipaje , Carne Roja/análisis , Porcinos , Enfermedades de los Porcinos/microbiología
12.
Rev Argent Microbiol ; 46(2): 122-5, 2014.
Artículo en Español | MEDLINE | ID: mdl-25011596

RESUMEN

In Argentina, EPEC is one of the most prevalent agents isolated from children with diarrhea. Because contamination with this pathotype could occur during slaughter, the aim of this study was to isolate and characterize EPEC strains obtained from live animals (cloacae), eviscerated carcasses, washed carcasses and water from chillers. Twenty nine isolates of atypical EPEC were characterized. These isolates presented a wide variety of serotypes, some of which (O2:H40, O8:H19 and O108:H9) had been reported in other animal species. Serotype O45:H8, previously isolated from children with diarrhea was also found. Isolates of serotypes O2:H40, O108:H9 and O123:H32 were detected at different stages of the slaughtering process, suggesting that the process is not adequately performed. This latter fact highlights the importance of reinforcing control and hygienic measures at different stages of the chicken slaughtering process in order to reduce microbial contamination.


Asunto(s)
Pollos/microbiología , Escherichia coli Enteropatógena/aislamiento & purificación , Mataderos , Animales
13.
Rev. argent. microbiol ; 46(2): 122-125, jun. 2014.
Artículo en Español | LILACS | ID: biblio-1016607

RESUMEN

En Argentina, Escherichia coli enteropatogénico (EPEC) es uno de los agentes más prevalentes aislados de niños con diarrea. Debido a que la contaminación con este patotipo en productos de pollo podría ocurrir durante el proceso de faena, nos planteamos como objetivo aislar y caracterizar EPEC de muestras de animales vivos (cloacas), carcasas evisceradas sin lavar, carcasas lavadas y agua del tanque de enfriamiento. Se caracterizaron 29 aislamientos de EPEC que presentaron una amplia variedad de serotipos, algunos de los cuales (O2:H40, O8:H19 y O108:H9) han sido informados en otras especies animales. También se encontró el serotipo O45:H8, aislado con anterioridad de niños con diarrea. Se detectaron aislamientos de los serotipos O2:H40, O108:H9 y O123:H32 en distintas etapas del proceso de faena, lo que sugiere que el procesamiento no se realiza en forma adecuada. Se torna necesario reforzar las medidas de control e higiene en las distintas etapas del proceso para disminuir la contaminación microbiana


In Argentina, EPEC is one of the most prevalent agents isolated from children with diarrhea. Because contamination with this pathotype could occur during slaughter, the aim of this study was to isolate and characterize EPEC strains obtained from live animals (cloacae), eviscerated carcasses, washed carcasses and water from chillers. Twenty nine isolates of atypical EPEC were characterized. These isolates presented a wide variety of serotypes, some of which (O2:H40, O8:H19 and O108:H9) had been reported in other animal species. Serotype O45:H8, previously isolated from children with diarrhea was also found. Isolates of serotypes O2:H40, O108:H9 and O123:H32 were detected at different stages of the slaughtering process, suggesting that the process is not adequately performed. This latter fact highlights the importance of reinforcing control and hygienic measures at different stages of the chicken slaughtering process in order to reduce microbial contamination


Asunto(s)
Animales , Pollos/microbiología , Escherichia coli Enteropatógena/aislamiento & purificación , Colimetría/análisis , Cloaca/microbiología , Cáscara de Huevo/microbiología , Infecciones por Escherichia coli/prevención & control , Escherichia coli Enteropatógena/clasificación
14.
Rev. Argent. Microbiol. ; 46(2): 122-5, 2014 Apr-Jun.
Artículo en Español | BINACIS | ID: bin-133672

RESUMEN

In Argentina, EPEC is one of the most prevalent agents isolated from children with diarrhea. Because contamination with this pathotype could occur during slaughter, the aim of this study was to isolate and characterize EPEC strains obtained from live animals (cloacae), eviscerated carcasses, washed carcasses and water from chillers. Twenty nine isolates of atypical EPEC were characterized. These isolates presented a wide variety of serotypes, some of which (O2:H40, O8:H19 and O108:H9) had been reported in other animal species. Serotype O45:H8, previously isolated from children with diarrhea was also found. Isolates of serotypes O2:H40, O108:H9 and O123:H32 were detected at different stages of the slaughtering process, suggesting that the process is not adequately performed. This latter fact highlights the importance of reinforcing control and hygienic measures at different stages of the chicken slaughtering process in order to reduce microbial contamination.


Asunto(s)
Pollos/microbiología , Escherichia coli Enteropatógena/aislamiento & purificación , Mataderos , Animales
15.
Curr Microbiol ; 65(3): 337-43, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22706777

RESUMEN

Environmental samples were taken from ground, cattle water troughs, and feeders from a dairy farm with different STEC prevalence between animal categories (weaning calves, rearing calves, and dairy cows). Overall, 23 % of samples were positive for stx genes, stx(2) being the most prevalent type. Isolates were analyzed by PCR monoplex to confirm generic E. coli and by two multiplex PCR to investigate the presence of stx(1), stx(2), eae, saa, ehxA, and other putative virulence genes encoded in STEC plasmids: katP, espP, subA, and stcE. The toxin genes were subtyped and the strains were serotyped. The ground and the environment of the rearing calves were the sites with the highest number of STEC-positive samples; however, cattle water troughs and the environment of cows were the places with the greater chance of finding stx(2EDL933) which is a subtype associated with serious disease in humans. Several non-O157 STEC serotypes were detected. The serotypes O8:H19; O26:H11; O26:H-; O118:H2; O141:H-; and O145:H- have been asociated with human illness. Furthermore, the emergent pathogen STEC O157:H- (stx(1)-ehxA-eae) was detected in the environment of the weaning calves. These results emphasize the risk that represents the environment as source of STEC, a potential pathogen for human and suggest the importance of developing control methods designed to prevent contaminations of food products and transmission from animal to person.


Asunto(s)
Industria Lechera , Microbiología Ambiental , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Animales , Bovinos , Distribución de Chi-Cuadrado , Agua Potable/virología , Femenino , Estiércol/virología , Plásmidos/genética , Toxinas Shiga/genética , Microbiología del Suelo
16.
Artículo en Inglés | MEDLINE | ID: mdl-23346554

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that cause mild or serious diseases and can lead to people death. This study reports the prevalence and characteristics of STEC O157 and non-O157 in commercial ground beef and environmental samples, including meat table, knife, meat mincing machine, and manipulator hands (n = 450) obtained from 90 retail markets over a nine-month period. The STEC isolates were serotyped and virulence genes as stx (Shiga toxin), rfb(O157)] (O157 lipopolysaccharide), fliC(H7) (H7 flagellin), eae (intimin), ehxA (enterohemolysin) and saa (STEC autoagglutinating adhesin), were determined. STEC O157 were identified in 23 (25.5%) beef samples and 16 (4.4%) environmental samples, while STEC non-O157 were present in 47 (52.2%) and 182 (50.5%), respectively. Among 54 strains isolated, 17 were STEC O157:H7 and 37 were STEC non-O157. The prevalent genotype for O157 was stx(2)/eae/ehxA/fliC(H7) (83.4%), and for STEC non-O157 the most frequent ones were stx(1)/stx(2)/saa/ehxA (29.7%); stx(2) (29.7%); and stx(2)/saa/ehxA (27%). None of the STEC non-O157 strains were eae-positive. Besides O157:H7, other 20 different serotypes were identified, being O8:H19, O178:H19, and O174:H28 the prevalent. Strains belonging to the same serotype could be isolated from different sources of the same retail market. Also, the same serotype could be detected in different stores. In conclusion, screening techniques are increasingly sensitive, but the isolation of STEC non-O157 is still a challenge. Moreover, with the results obtained from the present work, although more studies are needed, cross-contamination between meat and the environment could be suspected.


Asunto(s)
Microbiología Ambiental , Carne/microbiología , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Argentina , Flagelina/genética , Contaminación de Alimentos , Industria de Alimentos , Genotipo , Humanos , Epidemiología Molecular , Antígenos O/genética , Prevalencia , Serotipificación , Escherichia coli Shiga-Toxigénica/genética , Factores de Virulencia/genética
17.
Int. microbiol ; 7(4): 269-276, dic. 2004. tab
Artículo en Inglés | IBECS | ID: ibc-98771

RESUMEN

A total of 153 Shiga-toxin-producing Escherichia coli (STEC) isolates from feces of cattle and beef products (hamburgers and ground beef) in Argentina were characterized in this study. PCR showed that 22 (14%) isolates carried stx1 genes, 113 (74%) possessed stx2 genes and 18 (12%) both stx1 and stx2. Intimin (eae), enterohemolysin (ehxA), and STEC autoagglutinating adhesin (saa) virulence genes were detected in 36 (24%), 70 (46%) and in 34 (22%) of the isolates, respectively. None of 34 saa-positive isolates carried the gene eae, and 31 were ehxA-positive. Fourteen (7 of serotype O26:H11 and 4 of serotype O5:H-) isolates had intimin b1, 16 isolates possessed intimin g1 (11 of serotype O145:H- and 5 of serotype O157:H7), 5 isolates had intimin type e1 (4 of serotypes O103:H- and O103:H2), and one isolate O111:H- showed intimin type q/g2. Although the 153 STEC isolates belonged to 63 different seropathotypes, only 12 accounted for 58% of isolates. Seropathotype ONT:H- stx2 (18 isolates) was the most common, followed by O171:H2 stx2 (12 isolates), etc. The majority (84%) of STEC isolates belonged to serotypes previously found in human STEC and 56% to serotypes associated with STEC isolated from patients with hemolytic uremic syndrome (HUS). Thus, this study confirms that cattle are a major reservoir of STEC pathogenic for humans. To our knowledge, this is the first study that described the presence of saa gene in STEC of serotypes O20:H19, O39:H49, O74:H28, O79:H19, O116:H21, O120:H19, O141:H7, O141:H8, O174:H21, and ONT:H21. The serotypes O120:H19 and O185:H7 were not previously reported in bovine STEC (AU)


En este estudio hemos caracterizado un total de 153 Escherichia coli productores de toxinas Shiga (STEC) aisladas de las heces de ganado bovino y de carne picada y hamburguesas de vacuno en Argentina. Los ensayos de PCR mostraron que 22 (14%) aislamientos llevaban el gen stx1, 113 (74%) presentaban el gen stx2 y que 18 (12%) tenían ambos genes. Los genes de virulencia para la intimina (eae), la enterohemolisina (ehxA) y la adhesina autoaglutinante de STEC (saa) fueron detectados en 36 (24%), 70 (46%) y 34 (22%) de los aislamientos, respectivamente. Ninguno de los 34 aislamientos saa-positivos llevaba el gen eae, pero 31 eran ehxA-positivos. Catorce aislamientos (7 del serotipo O26:H11 y 4 del serotipo O5:H-) tenían la intimina b1, 16 poseían la intimina g1 (11 del serotipo O145:H- y 5 del serotipo O157:H7), 5 aislamientos eran positivos para la intimina tipo ε1 (4 de los serotipos O103:H- y O103:H2), y un aislamiento O111:H- mostró la intimina tipo θ/g2. Aunque los 153 aislamientos de STEC pertenecían a 63 seropatotipos, sólo 12 constituían el 58% de los aislamientos. El seropatotipo ONT:H- stx2 (18 aislamientos) fue el más común, seguido por el O171:H2 stx2 (12 aislamientos), etc. La mayoría de los aislamientos (84%) de STEC pertenecían a serotipos encontrados previamente en seres humanos y el 56% a serotipos asociados con STEC aislados de pacientes con el síndrome urémico hemolítico (HUS). Por tanto, este estudio confirma que el ganado bovino es un importante reservorio de STEC patógenos para humanos. Según nuestra información, este es el primer estudio que describe la presencia del gen saa en STEC de los serotipos O20:H19, O39:H49, O74:H28, O79:H19, O116:H21, O120:H19, O141:H7, O141:H8, O174:H21, y ONT:H21. Los serotipos O120:H19 y O185:H7 tampoco habían sido descritos previamente en STEC de origen bovino (AU)


Asunto(s)
Animales , Bovinos , Escherichia coli Shiga-Toxigénica/patogenicidad , Carne/microbiología , Enfermedades de los Bovinos/microbiología , Argentina , Heces/microbiología , Escherichia coli O157/aislamiento & purificación , Factores de Virulencia
18.
Vet Microbiol ; 100(1-2): 3-9, 2004 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15135507

RESUMEN

Grazing-fed cattle were previously demonstrated to be reservoir of non-O157 Shigatoxigenic Escherichia coli (STEC) serotypes in Argentina. The acid-resistance of some STEC strains makes it reasonable to assume the presence in feedlot of particular STEC serotypes. Fifty-nine animals were sampled every 2 weeks during 6 months by rectal swabs. Twenty-seven of 59 animals (45.8%) were shown to be Stx2(+); 3/59 (5.1%) carried Stx1(+) and 7/59 (11.9%) were Stx1(+) Stx2(+). Among 44 STEC isolates, 31 isolates were associated to 10 O serogroups (O2, O15, O25, O103, O145, O146, O157, O171, O174, O175) and 13 were considered non-typable (NT). Six H antigens (H2, H7, H8, H19, H21, H25) were distributed in 21 isolates whereas 23 were non-mobile (H-). Seventeen of 44 strains (38.6%) were eaeA(+) and 14 (31.8%) harbored the 60MDa plasmid. The megaplasmid (Mp) and eaeA gene were simultaneously found in a limited number of serotypes belonging to the enterohaemorrhagic E. coli (EHEC). E. coli O157:H7 strains, isolated from four (6.8%) animals, corresponded to the Stx2(+), eaeA(+), Mp(+) pattern. Three O157:H7 strains belonged to phage type 4 and the other strain was atypical. Many serotypes isolated from grain-fed cattle (O2:H25, O15:H21, O25:H19, O145:H-, O146:H-, O146:H21, O157:H7, O175:H8) also differed from those isolated by us previously from grazing animals. The serotypes O15:H21, O25:H19 and O175:H8 had not been identified at present as belonging to STEC. This work provides new data for the understanding of the ecology of STEC in grain-fed cattle and confirms that cattle are an important reservoir of STEC.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli/clasificación , Toxina Shiga I/genética , Toxina Shiga II/genética , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Pruebas de Aglutinación/veterinaria , Animales , Argentina , Tipificación de Bacteriófagos/veterinaria , Proteínas Portadoras/química , Proteínas Portadoras/genética , Bovinos , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Antígenos O/genética , Reacción en Cadena de la Polimerasa/veterinaria , Serotipificación/veterinaria , Toxina Shiga I/química , Toxina Shiga II/química , Virulencia
19.
Int Microbiol ; 7(4): 269-76, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15666247

RESUMEN

A total of 153 Shiga-toxin-producing Escherichia coli (STEC) isolates from feces of cattle and beef products (hamburgers and ground beef) in Argentina were characterized in this study. PCR showed that 22 (14%) isolates carried stx1 genes, 113 (74%) possessed stx2 genes and 18 (12%) both stx1 and stx2. Intimin (eae), enterohemolysin (ehxA), and STEC autoagglutinating adhesin (saa) virulence genes were detected in 36 (24%), 70 (46%) and in 34 (22%) of the isolates, respectively. None of 34 saa-positive isolates carried the gene eae, and 31 were ehxA-positive. Fourteen (7 of serotype O26:H11 and 4 of serotype O5:H-) isolates had intimin b1, 16 isolates possessed intimin g1 (11 of serotype O145:H- and 5 of serotype O157:H7), 5 isolates had intimin type e1 (4 of serotypes O103:H- and O103:H2), and one isolate O111:H- showed intimin type q/g2. Although the 153 STEC isolates belonged to 63 different seropathotypes, only 12 accounted for 58% of isolates. Seropathotype ONT:H- stx2 (18 isolates) was the most common, followed by O171:H2 stx2 (12 isolates), etc. The majority (84%) of STEC isolates belonged to serotypes previously found in human STEC and 56% to serotypes associated with STEC isolated from patients with hemolytic uremic syndrome (HUS). Thus, this study confirms that cattle are a major reservoir of STEC pathogenic for humans. To our knowledge, this is the first study that described the presence of saa gene in STEC of serotypes O20:H19, O39:H49, O74:H28, O79:H19, O116:H21, O120:H19, O141:H7, O141:H8, O174:H21, and ONT:H21. The serotypes O120:H19 and O185:H7 were not previously reported in bovine STEC.


Asunto(s)
Adhesinas Bacterianas/clasificación , Infecciones por Escherichia coli/veterinaria , Escherichia coli O157/patogenicidad , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/genética , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Argentina , Bovinos , Enfermedades de los Bovinos/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/clasificación , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Productos de la Carne/microbiología , Reacción en Cadena de la Polimerasa/métodos , Serotipificación , Toxina Shiga I/genética , Toxina Shiga II/genética , Virulencia/genética
20.
BMC Microbiol ; 3: 17, 2003 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-12914672

RESUMEN

BACKGROUND: In spite of Argentina having one of the highest frequencies of haemolytic uraemic syndrome (HUS), the incidence of Escherichia coli O157:H7 is low in comparison to rates registered in the US. Isolation of several non-O157 shiga toxin-producing Escherichia coli (STEC) strains from cattle and foods suggests that E. coli O157:H7 is an uncommon serotype in Argentina. The present study was undertaken to compare the survival rates of selected non-O157 STEC strains under acidic and alcoholic stress conditions, using an E. coli O157:H7 strain as reference. RESULTS: Growth at 37 degrees C of E. coli O26:H11, O88:H21, O91:H21, O111:H-, O113:H21, O116:H21, O117:H7, O157:H7, O171:H2 and OX3:H21, was found to occur at pH higher than 4.0. When the strains were challenged to acid tolerance at pH as low as 2.5, viability extended beyond 8 h, but none of the bacteria, except E. coli O91:H21, could survive longer than 24 h, the autochthonous E. coli O91:H21 being the more resistant serotype. No survival was found after 24 h in Luria Bertani broth supplemented with 12% ethanol, but all these serotypes were shown to be very resistant to 6% ethanol. E. coli O91:H21 showed the highest resistance among serotypes tested. CONCLUSIONS: This information is relevant in food industry, which strongly relies on the acid or alcoholic conditions to inactivate pathogens. This study revealed that stress resistance of some STEC serotypes isolated in Argentina is higher than that for E. coli O157:H7.


Asunto(s)
Escherichia coli O157/efectos de los fármacos , Etanol/farmacología , Ácidos/farmacología , Argentina , Medios de Cultivo/química , Medios de Cultivo/farmacología , Escherichia coli O157/química , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Toxina Shiga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...