Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromolecules ; 57(5): 2218-2229, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38495385

RESUMEN

Here, we present a detailed description of the in situ isothermal crystallization of poly(trimethylene 2,5-furandicarboxylate)(PTF) as revealed by real-time Fourier transform infrared spectroscopy (FTIR) and grazing incidence wide-angle X-ray scattering (GIWAXS). From FTIR experiments, the evolution of hydrogen bonding with crystallization time can be monitored in real time, while from GIWAXS, crystal formation can be followed. Density functional theory (DFT) calculations have been used to simulate FTIR spectra for different theoretical structures, enabling a precise band assignment. In addition, based on DFT ab initio calculations, the influence of hydrogen bonding on the evolution with crystallization time can be understood. Moreover, from DFT calculations and comparison with both FTIR and GIWAXS experiments, a crystalline structure of poly(trimethylene 2,5-furandicarboxylate) is proposed. Our results demonstrate that hydrogen bonding is present in both the crystalline and the amorphous phases and its rearrangement can be considered as a significant driving force for crystallization of poly(alkylene 2,5-furanoate)s.

2.
Entropy (Basel) ; 25(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36832689

RESUMEN

The prediction of financial crashes in a complex financial network is known to be an NP-hard problem, which means that no known algorithm can efficiently find optimal solutions. We experimentally explore a novel approach to this problem by using a D-Wave quantum annealer, benchmarking its performance for attaining a financial equilibrium. To be specific, the equilibrium condition of a nonlinear financial model is embedded into a higher-order unconstrained binary optimization (HUBO) problem, which is then transformed into a spin-1/2 Hamiltonian with at most, two-qubit interactions. The problem is thus equivalent to finding the ground state of an interacting spin Hamiltonian, which can be approximated with a quantum annealer. The size of the simulation is mainly constrained by the necessity of a large number of physical qubits representing a logical qubit with the correct connectivity. Our experiment paves the way for the codification of this quantitative macroeconomics problem in quantum annealers.

3.
Phys Rev Lett ; 124(14): 140504, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338974

RESUMEN

Active learning is a machine learning method aiming at optimal design for model training. At variance with supervised learning, which labels all samples, active learning provides an improved model by labeling samples with maximal uncertainty according to the estimation model. Here, we propose the use of active learning for efficient quantum information retrieval, which is a crucial task in the design of quantum experiments. Meanwhile, when dealing with large data output, we employ active learning for the sake of classification with minimal cost in fidelity loss. Indeed, labeling only 5% samples, we achieve almost 90% rate estimation. The introduction of active learning methods in the data analysis of quantum experiments will enhance applications of quantum technologies.

4.
Phys Chem Chem Phys ; 22(10): 5625-5637, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32101185

RESUMEN

The aqueous-phase and surface reactions of ozone (O3) with iodide (I-) in/on seawater have been recently found to be a strong atmospheric source of iodine. In addition, ozone also reacts with I- in solid and aqueous sea-salt aerosol. However, the primary products of the heterogeneous reactions of ozone with I- have not been clarified. In this paper, solid and aqueous KI aerosols have been exposed to ozone in an aerosol flow tube system and I- and iodate (IO3-) concentrations have been measured by UV-Vis spectroscopy. The results of these experiments have been combined with a kinetic model to elucidate the primary products of the aqueous and surface reactions. The reaction of ozone with aqueous iodide has been inferred to originate different products depending on whether it occurs at the surface via O3 adsorption (product I2-) or in the aqueous phase via O3 solvation (product IO-). The surface reaction of ozone with solid KI in the presence of water vapor forms KIO3, and other species, which are likely to be gaseous. Although the reactions have been studied in aerosols, the results can be extrapolated to aqueous solutions as well.

5.
Materials (Basel) ; 13(4)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32074986

RESUMEN

A quantum memristor is a passive resistive circuit element with memory, engineered in a given quantum platform. It can be represented by a quantum system coupled to a dissipative environment, in which a system-bath coupling is mediated through a weak measurement scheme and classical feedback on the system. In quantum photonics, such a device can be designed from a beam splitter with tunable reflectivity, which is modified depending on the results of measurements in one of the outgoing beams. Here, we show that a similar implementation can be achieved with frequency-entangled optical fields and a frequency mixer that, working similarly to a beam splitter, produces state superpositions. We show that the characteristic hysteretic behavior of memristors can be reproduced when analyzing the response of the system with respect to the control, for different experimentally attainable states. Since memory effects in memristors can be exploited for classical and neuromorphic computation, the results presented in this work could be a building block for constructing quantum neural networks in quantum photonics, when scaling up.

6.
Neural Netw ; 122: 273-278, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31731044

RESUMEN

Memristors, resistors with memory whose outputs depend on the history of their inputs, have been used with success in neuromorphic architectures, particularly as synapses and non-volatile memories. However, to the best of our knowledge, no model for a network in which both the synapses and the neurons are implemented using memristors has been proposed so far. In the present work we introduce models for single and multilayer perceptrons based exclusively on memristors. We adapt the delta rule to the memristor-based single-layer perceptron and the backpropagation algorithm to the memristor-based multilayer perceptron. Our results show that both perform as expected for perceptrons, including satisfying Minsky-Papert's theorem. As a consequence of the Universal Approximation Theorem, they also show that memristors are universal function approximators. By using memristors for both the neurons and the synapses, our models pave the way for novel memristor-based neural network architectures and algorithms. A neural network based on memristors could show advantages in terms of energy conservation and open up possibilities for other learning systems to be adapted to a memristor-based paradigm, both in the classical and quantum learning realms.


Asunto(s)
Redes Neurales de la Computación , Neuronas , Sinapsis , Algoritmos
7.
Nanoscale ; 11(42): 19870-19876, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31599278

RESUMEN

The evolution of the magnetic anisotropy directions has been studied in a magnetite (Fe3O4) thin film grown by infrared pulsed-laser deposition on SrTiO3(100):Nb substrate. The magnetic easy axes at room temperature are found along the in-plane 〈100〉 film directions, which means a rotation of the easy axis by 45° with respect to the directions typically reported for bulk magnetite and films grown on single-crystal substrates. Moreover, when undergoing the Verwey transition temperature, TV, the easy axis orientation evolves to the 〈110〉 film directions. This anomalous behavior has been demonstrated by measuring first the angular dependence of coercivity and remanence well above and below TV by high-resolution vectorial magneto-optical Kerr effect (v-MOKE). Ferromagnetic resonance (FMR) measurements have additionally proven a well-defined fourfold magnetic anisotropy induced during growth with confirmed easy axis directions along 〈100〉 for T > TV and 〈110〉 for T < TV. These results provide a clear proof of the possibility of tuning magnetic anisotropy in Fe3O4 thin films by proper control on the growth parameters and substrate choice.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 208: 262-270, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30340206

RESUMEN

The documentation and monitoring of cleaning operations on paintings benefit from the identification and determination of thickness of the materials to be selectively removed. Since in artworks diagnosis the preservation of the object's integrity is a priority, the application of non-invasive techniques is commonly preferred. In this work, we present the results obtained with a set of non-invasive optical techniques for the chemical and physical characterization of six copper-phthalocyanine (Cu-Pc) acrylic paints. Cu-Pc pigments have been extensively used by artists over the past century, thanks to their properties and low cost of manufacture. They can also be found in historical paintings in the form of overpaints/retouchings, providing evidence of recent conservation treatments. The optical behaviour and the chemical composition of Cu-Pc paints were investigated through a multi-analytical approach involving micro-Raman spectroscopy, Fibre Optics Reflectance Spectroscopy (FORS) and Laser Induced Fluorescence (LIF), enabling the differentiation among pigments and highlighting discrepancies with the composition declared by the manufacturer. The applicability of Non Linear Optical Microscopy (NLOM) for the evaluation of paint layer thickness was assessed using the modality of Multi-photon Excitation Fluorescence (MPEF). Thickness values measured with MPEF were compared with those retrieved through Optical Coherence Tomography (OCT), showing significant consistency and paving the way for further non-linear stratigraphic investigations on painting materials.

9.
Sci Rep ; 7: 42933, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28230090

RESUMEN

We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip.

10.
Phys Chem Chem Phys ; 18(11): 7651-60, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26906609

RESUMEN

Atmospheric iodine chemistry plays a key role in tropospheric ozone catalytic destruction, new particle formation, and as one of the possible sinks of gaseous polar elemental mercury. Moreover, it has been recently proposed that reaction of ozone with iodide on the sea surface could be the major contributor to the chemical loss of atmospheric ozone. However, the mechanism of the reaction between aqueous iodide and ozone is not well known. The aim of this paper is to improve the understanding of such a mechanism. In this paper, an ab initio study of the reaction of aqueous iodide and ozone is presented, evaluating thermodynamic data of the different reactions proposed in previous experimental studies. In addition, the structures, energetics and possible evolution of the key IOOO(-) intermediate are discussed for the first time.

11.
Sci Rep ; 6: 20956, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853918

RESUMEN

We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.


Asunto(s)
Evolución Biológica , Modelos Teóricos , Teoría Cuántica , Selección Genética , Algoritmos , Simulación por Computador , Ambiente , Humanos , Mutación
12.
Phys Chem Chem Phys ; 14(45): 15699-705, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23086041

RESUMEN

We report on the fabrication of gold coated nanostructured polymer thin films and on their characterization as substrates for surface enhanced Raman spectroscopy (SERS). Laser induced periodic surface structures (LIPSS) were obtained on thin polymer films of poly(trimethylene terephthalate) (PTT) upon laser irradiation with the fourth harmonic of a Nd:YAG laser (266 nm, pulse duration 6 ns) resulting in a period close to the incident wavelength. The nanostructured polymer substrates were coated with a nanoparticle assembled gold layer by pulsed laser deposition using the fifth harmonic of a Nd:YAG laser (213 nm, pulse duration 15 ns). Different deposition times resulted in thicknesses from a few nanometres up to several tens of nanometres. Analysis by atomic force microscopy and grazing incident small angle X-ray scattering showed that gold coating preserved the LIPSS relief. The capabilities of the produced nanostructures as substrates for SERS have been investigated using benzenethiol as a test molecule. The SERS signal is substantially larger than that observed for a gold-coated flat substrate. Advantages of this new type of SERS substrates are discussed.


Asunto(s)
Oro/química , Rayos Láser , Tereftalatos Polietilenos/química , Estructura Molecular , Nanoestructuras/química , Espectrometría Raman , Propiedades de Superficie
13.
J Phys Chem B ; 111(19): 5487-93, 2007 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-17451268

RESUMEN

In this contribution, we report on studies of rotational and diffusional dynamics of 7-hydroxyquinoline (7HQ) within a reverse micelle (RM) containing different amounts of water. Analyzed in terms of the wobbling-in-a-cone model, the data reveal structural and dynamical properties of the nanopool. We clearly observed three regions in the behavior of confined water molecules within the RM hosting a double proton-transfer reaction between the probe and water. This observation remarkably reproduces the change of calculated water density within this life-mimicking medium. The number of water molecules per AOT head in the transition regions changes from 2 to 5, the latter being very near to the full solvation number (6) of the RM heads. Moreover, the H-bonds breaking and making within the RM to give new structures of the probe strongly affect the environment fluidization in different extents, reflected in different relaxation times of these structures; however, they are of similar sizes. We discuss the role of RM confinement and the proton-transfer dynamics on the behavior of water and their relationships to the packing of water molecules in the studied range of concentrations.


Asunto(s)
Hidroxiquinolinas/química , Nanoestructuras/química , Agua/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular , Protones , Factores de Tiempo
14.
Proc Natl Acad Sci U S A ; 102(52): 18807-12, 2005 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-16365300

RESUMEN

In this work, we report on studies of the nature of the dynamics and hydrophobic binding in cyclodextrins and human serum albumin protein complexes with orange II. With femtosecond time resolution, we examined the proton-transfer and trans-cis isomerization reactions of the ligand in these nanocavities and in pure solvents. Because of confinement at the ground state, the orientational motion in the formed phototautomer is restricted, leading to a rich dynamics. Therefore, the emission lifetimes span a large window of tens to hundreds of picoseconds in the cavities. Possible H-bond interactions between the guest and cyclodextrin do not affect the caged dynamics. For the protein-ligand complexes, slow diffusional motion ( approximately 630 ps) observed in the anisotropy decay indicates that the binding structure is not completely rigid, and the embedded guest is not frozen with the hydrophobic pocket. The ultrafast isomerization and decays are explained in terms of coupling motions between N-N and C-N stretching modes of the formed tautomer. We discuss the role of confinement on the trans-cis isomerization with the cavities and its relationships to frequency and time domains of nanostructure emission.


Asunto(s)
Compuestos Azo/química , Bencenosulfonatos/química , Anisotropía , Compuestos Azo/farmacología , Bencenosulfonatos/farmacología , Carbono/química , Colorantes/química , Colorantes/farmacología , Ciclodextrinas/química , Enlace de Hidrógeno , Ligandos , Luz , Metabolismo de los Lípidos , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Nitrógeno/química , Preparaciones Farmacéuticas/química , Fotoquímica , Protones , Retina/metabolismo , Rodopsina/química , Espectrofotometría , Temperatura , Factores de Tiempo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...