Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069331

RESUMEN

Perirenal adipose tissue (PRAT) surrounding the kidney is emerging as a player and novel independent risk factor in diabetic kidney disease (DKD); DKD is a complication of diabetes and is a major cause of increased cardiovascular (CV) risk and CV mortality in affected patients. We determined the effect of diabetes induction on (i) kidney and CV damage and (ii) on the expression of proinflammatory and profibrotic factors in both the PRAT and the mesenteric adipose tissue (MAT) of Munich Wistar Frömter (MWF) rats. The 16-week-old male MWF rats (n = 10 rats/group) were fed standard chow (MWF-C) or a high-fat/high-sucrose diet for 6 weeks together with low-dose streptozotocin (15 mg/kg i.p.) at the start of dietary exposure (MWF-D). Phenotyping was performed at the end of treatment through determining water intake, urine excretion, and oral glucose tolerance; use of the homeostatic model assessment-insulin resistance index (HOMA-IR) evidenced the development of overt diabetes manifestation in MWF-D rats. The kidney damage markers Kim-1 and Ngal were significantly higher in MWF-D rats, as were the amounts of PRAT and MAT. A diabetes-induced upregulation in IL-1, IL-6, Tnf-α, and Tgf-ß was observed in both the PRAT and the MAT. Col1A1 was increased in the PRAT but not in the MAT of MWF-D, whereas IL-10 was lower and higher in the PRAT and the MAT, respectively. Urinary albumin excretion and blood pressure were not further increased by diabetes induction, while heart weight was higher in the MWF-D. In conclusion, our results show a proinflammatory and profibrotic in vivo environment in PRAT induced by diabetes which might be associated with kidney damage progression in the MWF strain.


Asunto(s)
Diabetes Mellitus , Enfermedades Renales , Humanos , Ratas , Masculino , Animales , Ratas Wistar , Albuminuria , Regulación hacia Arriba , Inflamación , Colágeno , Tejido Adiposo
2.
Acta Physiol (Oxf) ; 239(3): e14023, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37553856

RESUMEN

AIM: In addition to functioning as an energy sensor switch, AMPK plays a key role in the maintenance of cardiovascular homeostasis. However, obesity disrupts AMPK signaling, contributing to endothelial dysfunction and cardiovascular disease. This study aimed to elucidate if a short-term dietary intervention consisting in replacing the high-fat diet with a standard diet for 2 weeks could reverse obesity-induced endothelial dysfunction via AMPK-CREB activation. METHODS: For this, 5-week-old male C57BL6J mice were fed a standard (Chow) or a high-fat (HF) diet for 8 weeks. The HF diet was replaced by the chow diet for the last 2 weeks in half of HF mice, generating 3 groups: Chow, HF and HF-Chow. Vascular reactivity and western-blot assays were performed in the thoracic aorta. RESULTS: Returning to a chow diet significantly reduced body weight and glucose intolerance. Relaxant responses to acetylcholine and the AMPK activator (AICAR) were significantly impaired in HF mice but improved in HF-Chow mice. The protein levels of AMPKα, p-CREB and antioxidant systems (heme oxygenase-1 (HO-1) and catalase) were significantly reduced in HF but normalized in HF-Chow mice. CONCLUSION: Improving dietary intake by replacing a HF diet with a standard diet improves AMPK-mediated responses due to the upregulation of the AMPK/CREB/HO-1 signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Enfermedades Vasculares , Ratones , Masculino , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Regulación hacia Arriba , Obesidad/metabolismo , Transducción de Señal , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
3.
Sci Rep ; 12(1): 4225, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273216

RESUMEN

Endothelial adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in the regulation of vascular tone through stimulating nitric oxide (NO) release in endothelial cells. Since obesity leads to endothelial dysfunction and AMPK dysregulation, AMPK activation might be an important strategy to restore vascular function in cardiometabolic alterations. Here, we report the identification of a novel AMPK modulator, the indolic derivative IND6, which shows affinity for AMPKα1ß1γ1, the primary AMPK isoform in human EA.Hy926 endothelial cells. IND6 shows inhibitory action of the enzymatic activity in vitro, but increases the levels of p-Thr174AMPK, p-Ser1177eNOS and p-Ser79ACC in EA.Hy926. This paradoxical finding might be explained by the ability of IND6 to act as a mixed-type inhibitor, but also to promote the enzyme activation by adopting two distinct binding modes at the ADaM site. Moreover, functional assays reveal that IND6 increased the eNOS-dependent production of NO and elicited a concentration-dependent vasodilation of endothelium-intact rat aorta due to AMPK and eNOS activation, demonstrating a functional activation of the AMPK-eNOS-NO endothelial pathway. This kinase inhibition profile, combined with the paradoxical AMPK activation in cells and arteries, suggests that these new chemical entities may constitute a valuable starting point for the development of new AMPK modulators with therapeutic potential for the treatment of vascular complications associated with obesity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Vasodilatación , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/metabolismo , Fosforilación , Ratas , Transducción de Señal , Vasodilatación/efectos de los fármacos
4.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613483

RESUMEN

Arterial stiffness is a major vascular complication of chronic kidney disease (CKD). The development of renal damage, hypertension, and increased pulse wave velocity (PWV) in CKD might be associated with an imbalance in bone morphogenetic proteins (BMP)-2 and BMP-7. Plasma BMP-2 and BMP-7 were determined by ELISA in CKD patients (stages I-III; n = 95) and Munich Wistar Frömter (MWF) rats. Age-matched Wistar rats were used as a control. The expression of BMP-2, BMP-7, and profibrotic and calcification factors was determined in kidney and perivascular adipose tissues (PVAT). BMP-2 was higher in stage III CKD patients compared to control subjects. BMP-7 was lower at any CKD stage compared to controls, with a significant further reduction in stage III patients. A similar imbalance was observed in MWF rats together with the increase in systolic (SBP) and diastolic blood pressure (DBP), or pulse wave velocity (PWV). MWF exhibited elevated urinary albumin excretion (UAE) and renal expression of BMP-2 or kidney damage markers, Kim-1 and Ngal, whereas renal BMP-7 was significantly lower than in Wistar rats. SBP, DBP, PWV, UAE, and plasma creatinine positively correlated with the plasma BMP-2/BMP-7 ratio. Periaortic and mesenteric PVAT from MWF rats showed an increased expression of BMP-2 and profibrotic and calcification markers compared to Wistar rats, together with a reduced BMP-7 expression. BMP-2 and BMP-7 imbalance in plasma, kidney, and PVATs is associated with vascular damage, suggesting a profibrotic/pro-calcifying propensity associated with progressive CKD. Thus, their combined analysis stratified by CKD stages might be of clinical interest to provide information about the degree of renal and vascular damage in CKD.


Asunto(s)
Insuficiencia Renal Crónica , Rigidez Vascular , Animales , Ratas , Proteína Morfogenética Ósea 7 , Riñón , Análisis de la Onda del Pulso , Ratas Wistar , Insuficiencia Renal Crónica/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...