Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Intervalo de año de publicación
2.
Eur J Med Res ; 29(1): 313, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849950

RESUMEN

Alzheimer's disease (AD) is a diverse disease with a complex pathophysiology. The presence of extracellular ß-amyloid deposition as neuritic plaques and intracellular accumulation of hyper-phosphorylated tau as neurofibrillary tangles remain the core neuropathologic criteria for diagnosing Alzheimer's disease. Nonetheless, several recent basic discoveries have revealed significant pathogenic roles for other essential cellular and molecular processes. Previously, there were not so many disease-modifying medications (DMT) available as drug distribution through the blood-brain barrier (BBB) is difficult due to its nature, especially drugs of polypeptides nature and proteins. Recently FDA has approved lecanemab as DMT for its proven efficacy. It is also complicated to deliver drugs for diseases like epilepsy or any brain tumor due to the limitations of the BBB. After the advancements in the drug delivery system, different techniques are used to transport the medication across the BBB. Other methods are used, like enhancement of brain blood vessel fluidity by liposomes, infusion of hyperosmotic solutions, and local intracerebral implants, but these are invasive approaches. Non-invasive approaches include the formulation of nanoparticles and their coating with polymers. This review article emphasizes all the above-mentioned techniques, procedures, and challenges to transporting medicines across the BBB. It summarizes the most recent literature dealing with drug delivery across the BBB.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Animales , Transporte Biológico
3.
Molecules ; 28(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37687232

RESUMEN

Fruits, vegetables, and other food items contain phytochemicals or secondary metabolites which may be considered non-essential nutrients but have medicinal importance. These dietary phytochemicals exhibit chemopreventive and therapeutic effects against numerous diseases. Polyphenols are secondary metabolites found in vegetables, fruits, and grains. These compounds exhibit several health benefits such as immune modulators, vasodilators, and antioxidants. This review focuses on recent studies on using dietary polyphenols to treat cardiovascular disorders, atherosclerosis, and vascular endothelium deficits. We focus on exploring the safety of highly effective polyphenols to ensure their maximum impact on cardiac abnormalities and discuss recent epidemiological evidence and intervention trials related to these properties. Kaempferol, quercetin, and resveratrol prevent oxidative stress by regulating proteins that induce oxidation in heart tissues. In addition, polyphenols modulate the tone of the endothelium of vessels by releasing nitric oxide (NO) and reducing low-density lipoprotein (LDL) oxidation to prevent atherosclerosis. In cardiomyocytes, polyphenols suppress the expression of inflammatory markers and inhibit the production of inflammation markers to exert an anti-inflammatory response. Consequently, heart diseases such as strokes, hypertension, heart failure, and ischemic heart disease could be prevented by dietary polyphenols.


Asunto(s)
Aterosclerosis , Insuficiencia Cardíaca , Polifenoles/farmacología , Polifenoles/uso terapéutico , Verduras , Endotelio Vascular
4.
ACS Omega ; 8(30): 26982-27001, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37546625

RESUMEN

Background:Dryopteris ramosa is used as an old treatment for several diseases. D. ramose fronds are eaten to treat gastrointestinal (GIT) issues and as an antibiotic. However, there is a dearth of literature justifying its traditional use. Aims and objectives: the current work used biological and molecular docking studies to support traditional usage and elucidate D. ramosa's multitarget mechanism. Materials and methods: Bioactive compounds were docked in silico. Force displacement transducers coupled with a power lab data gathering system examined the effects of compounds on rabbit jejunum, trachea, and aorta tissues. Albino mice and rats were used for in vivo studies. Results: Bioactive compounds interacted with inflammation, asthma, and diarrhea genes, according to in silico studies. D. ramosa crude extract (Dr.Cr) calmed impulsive contractions and K+ (80 mM)-provoked contractions in the jejunum and tracheal tissue dose-dependently, showing the presence of the Ca++ channel-blocking (CCB) effect, further verified by the rightward parallel shift of CRCs equivalent to verapamil. Polarity-based fractionation showed spasmolytic activity in Dr.DCM and muscarinic receptors mediated spasmogenic activity in the Dr.Aq fraction. Dr.Cr vasoconstricted the aortic preparation, which was totally blocked by an angiotensin II receptor antagonist. This suggests that Dr. Cr's contractile effect is mediated through angiotensin receptors. In rats and mice, it showed anti-inflammatory and antidiarrheal action. Conclusion: This study supports the traditional medicinal uses of D. ramosa against GIT disorders and may be an important therapeutic agent in the future.

5.
Metabolites ; 13(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37512501

RESUMEN

In folklore medicine, Conocarpus lancifolius is used to treat various illnesses. The main objective of this study was a comprehensive investigation of Conocarpus lancifolius leaf aqueous extract (CLAE) for its antioxidant, cardioprotective, anxiolytic, antidepressant and memory-enhancing capabilities by using different in vitro, in vivo and in silico models. The in vitro experimentation revealed that CLAE consumed an ample amount of total phenolics (67.70 ± 0.15 µg GAE/mg) and flavonoids (47.54 ± 0.45 µg QE/mg) with stronger antiradical effects through DPPH (IC50 = 16.66 ± 0.42 µg/mL), TAC (77.33 ± 0.41 µg AAE/mg) and TRP (79.11 ± 0.67 µg GAE/mg) assays. The extract also displayed suitable acetylcholinesterase (AChE) inhibitory (IC50 = 110.13 ± 1.71 µg/mL) activity through a modified Ellman's method. The toxicology examination presented no mortality or any signs of clinical toxicity in both single-dose and repeated-dose tests. In line with the cardioprotective study, the pretreatment of CLAE was found to be effective in relieving the isoproterenol (ISO)-induced myocardial injury in rats by normalizing the heart weight index, serum cardiac biomarkers, lipid profile and various histopathological variations. In the noise-stress-induced model for behavior attributes, the results demonstrated that CLAE has the tendency to increase the time spent in the central zone and elevated open arms in the open field and elevated plus maze tests (examined for anxiety assessment), reduced periods of immobility in the forced swimming test (for depression) and improved recognition and working memory in the novel object recognition and Morris water maze tests, respectively. Moreover, the LC-ESI-MS/MS profiling predicted 53 phytocompounds in CLAE. The drug-likeness and ADMET analysis exhibited that the majority of the identified compounds have reasonable physicochemical and pharmacokinetic profiles. The co-expression of molecular docking and network analysis indicated that top-ranked CLAE phytoconstituents act efficiently against the key proteins and target multiple signaling pathways to exert its cardiovascular-protectant, anxiolytic, antidepressant and memory-enhancing activity. Hence, this artifact illustrates that the observed biological properties of CLAE elucidate its significance as a sustainable source of bioactive phytochemicals, which appears to be advantageous for pursuing further studies for the development of new therapeutic agents of desired interest.

6.
J Ethnopharmacol ; 317: 116696, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37315649

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa webbiana (Family: Rosaceae) is used by South Asian herbalists to treat gastrointestinal and respiratory disorders. AIM OF THE STUDY: This research aimed at multiple targets to verify R. webbiana for treating diarrhea and asthma. In vitro, in vivo, and in silico experiments were planned to demonstrate the antispasmodic and bronchodilator potential of R. webbiana. MATERIALS AND METHODS: The bioactive compounds of R. webbiana were identified and quantified through LC ESI-MS/MS and HPLC. These compounds were predicted for muti-mechanisms of bronchodilator and antispasmodic potential in network pharmacology and molecular docking. In vitro methods (isolated rabbit trachea, bladder, and jejunum tissues) confirmed these multi-mechanisms for antispasmodic and bronchodilator effects. Antiperistalsis, antidiarrheal, and antisecretory experiments were conducted in in-vivo experiments. RESULTS: The phytochemical analysis indicates the presence of rutin (742.91 µg/g), kaempferol (726.32 µg/g), and quercitrin (688.20 µg/g) in Rw. EtOH. These bioactive compounds in network pharmacology interfere with the pathogenic genes of diarrhea and asthma, which are the members of calcium-mediated signaling pathways and showed the stronger binding affinity towards voltage-gated L-type calcium channels, myosin light chain-kinase, Calcium calmodulin-dependent-kinase, Phosphodiesterase-4, and phosphoinositide phospholipase-C in molecular docking. Rw. EtOH elicited a spasmolytic response in isolated jejunum, trachea, and urine preparations by relaxing K+ (80 mM) and CCh (1 µM) spastic contractions. Additionally, it suppressed calcium concentration-response curves to the right, like verapamil. Like dicyclomine, it caused a rightward parallel shift of the CCh curves, followed by a non-parallel shift at higher concentrations with suppression of the maximal response. Like papaverine, it also caused isoprenaline-induced inhibitory CRCs to shift to the left. Verapamil did not potentiate isoprenaline-induced inhibitory CRCs, although it was more efficacious against K+ (80 mM) than CCh (1 µM)-induced contractions. R. webbiana EtOH extract exhibited complete antiperistalsis (21.55%), antidiarrheal (80.33%), and antisecretory (82.59±0.60) activities in vivo experiments at the dose of 300 mg/kg. CONCLUSION: Thus, Rw. EtOH modulated multiple pathways, produced calcium antagonistic, anticholinergic, and phosphodiesterase inhibitory actions, and had antidiarrheal and bronchodilator effects.


Asunto(s)
Asma , Rosa , Animales , Conejos , Antidiarreicos/farmacología , Antidiarreicos/uso terapéutico , Antidiarreicos/química , Parasimpatolíticos/uso terapéutico , Broncodilatadores/farmacología , Isoproterenol , Simulación del Acoplamiento Molecular , Calcio/metabolismo , Estudios Prospectivos , Espectrometría de Masas en Tándem , Extractos Vegetales/efectos adversos , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Verapamilo/farmacología , Yeyuno , Fármacos Gastrointestinales/farmacología , Canales de Calcio , Asma/tratamiento farmacológico
7.
Molecules ; 28(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241737

RESUMEN

Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic ß-cells against glucose toxicity, promoting ß-cell proliferation, reducing ß-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estilbenos , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/uso terapéutico , Antocianinas/farmacología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Glucosa/metabolismo , Insulina/metabolismo , Antioxidantes/farmacología , Flavonoles , Diarilheptanoides/uso terapéutico , Estilbenos/uso terapéutico
8.
Comput Biol Med ; 155: 106596, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773554

RESUMEN

BACKGROUND: In addition to the nutritional benefits of Cucumis melo L., herbalists in Pakistan and India employ seeds to treat various ailments. This study aimed to determine the regulatory role of C. melo seeds in calcium-mediated smooth muscle contraction. METHODS: We identified and quantified the phytochemicals of C. melo with LC ESI-MS/MS and HPLC, then conducted in vitro and in vivo tests to confirm the involvement in smooth muscle relaxation. Then, diarrhea-predominant irritable bowel syndrome gene datasets from NCBI GEO were acquired, DEGs and WGCNA followed by functional enrichment analysis. Next, molecular docking of key genes was performed. RESULTS: The quantification of C. melo seeds revealed concentrations of rutin, kaempferol, and quercetin were 702.38 µg/g, 686.29 µg/g, and 658.41 µg/g, respectively. In vitro experiments revealed that C. melo seeds had a dose-dependent relaxant effect for potassium chloride (80 mM)-induced spastic contraction and exhibited calcium antagonistic response in calcium dose-response curves. In in vivo studies, Cm.EtOH exhibited antidiarrheal, antiperistaltic, and antisecretory effects. The functional enrichment of WGCNA and DEGs IBS-associated pathogenic genes, including those involved in calcium-mediated signaling, MAPK cascade, and inflammatory responses. MAPK1 and PIK3CG were identified as key genes with greater binding affinity with rutin, quercitrin, and kaempferol in molecular docking. CONCLUSIONS: The bronchodilator and antidiarrheal effects of C. melo were produced by altering the regulatory genes of calcium-mediated smooth contraction.


Asunto(s)
Cucumis melo , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Cucumis melo/química , Quempferoles/análisis , Antidiarreicos/análisis , Espectrometría de Masas en Tándem , Calcio , Señalización del Calcio , Simulación del Acoplamiento Molecular , Semillas/química , Espasmo , Rutina/análisis
9.
Front Pharmacol ; 14: 1277594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348351

RESUMEN

Background: Cardiovascular diseases (CVD) continue to threaten health worldwide, and account for a significant portion of deaths and illnesses. In both developing and industrialized nations, they challenge their health systems. There are several traditional uses of Cucurbitaceae seeds in Pakistan, India, Iran, and China, including treating cardiovascular, neurological, and urogenital diseases. Methods: In the present work, integrated techniques of metabolomics profiling and computational cardiomyocyte stimulation were used to investigate possible mechanisms of C. melo in isoprenaline (ISO)-induced myocardial infarction. In vitro, vasoconstrictions, paired atria, and in vivo invasive blood pressure measurement models were performed to explore the mechanism of action of C. melo hydroethanolic seed extract (Cm-EtOH). Results: Results showed that Cm-EtOH demonstrates NO-based endothelium-derived relaxing factor (EDRF) vasorelaxant response, negative chronotropic and inotropic response in the atrium, and hypotensive effects in normotensive rats. Results also revealed that Cm-EtOH decreases cardiomyocyte hypertrophy and reverts the altered gene expressions, biochemical, and metabolites in ISO-induced myocardial infarction (MI) rats. The extract additionally reversed ISO-induced MI-induced oxidative stress, energy consumption, and amino acid metabolism. Moreover, C. melo seeds increased EDRF function, energy production, and antioxidant capacity to treat myocardial and vascular disorders. In computational cardiomyocyte simulation, gallic acid reduced action potential duration, upstroke velocity (dV/dtmax), and effective refractory period. Conclusion: This study highlights the therapeutic potential of C. melo seeds to treat cardiovascular diseases and provides mechanistic insight into its antihypertensive and cardioprotective activities.

10.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36558973

RESUMEN

The present study aimed to determine the mechanisms responsible for calcium-mediated smooth muscle contractions in C. melo seeds. The phytochemicals of C. melo were identified and quantified with the aid of Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI-MS/MS) and high-performance liquid chromatography (HPLC), and then tested in-vitro and in vivo to confirm involvement in smooth muscle relaxation. Allergic asthma gene datasets were acquired from the NCBI gene expression omnibus (GEO) and differentially expressed gene (DEG) analysis, weighted gene co-expression network analysis (WGCNA), and functional enrichment analysis were conducted. Additionally, molecular docking of key genes was carried out. Kaempferol, rutin, and quercetin are identified as phytochemical constituents of C. melo seeds. Results indicated that C. melo seeds exhibit a dose-dependent relaxant effect for potassium chloride (80 mM)- induced spastic contraction and calcium antagonistic response in calcium dose-response curves. The functional enrichment of WGCNA and DEG asthma-associated pathogenic genes showed cytokine-mediated pathways and inflammatory responses. Furthermore, CACNA1A, IL2RB, and NOS2 were identified as key genes with greater binding affinity with rutin, quercitrin, and kaempferol in molecular docking. These results show that the bronchodilator and antidiarrheal effects of C. melo were produced by altering the regulatory genes of calcium-mediated smooth muscle contraction.

11.
Pharmaceuticals (Basel) ; 15(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631468

RESUMEN

Apart from the nutritional value, Cucumis sativus L. has also been used in the traditional medicine of Iran, Pakistan, and India. Its seeds are used by herbalists to treat gastrointestinal, respiratory, and urinary problems. However, more investigations are required to explain its mechanisms for treating GI, respiratory, and urinary diseases. Accordingly, the aim of the present work was to investigate the antispasmodic, bronchodilator, and antidiarrheal activities of C. sativus seeds extracts and the underlying mechanisms of action. For this purpose, sequential extracts of C. sativus seeds were prepared in n-hexane, dichloromethane, ethanol, and water. Bioactive compounds in C. sativus seed extracts were identified and quantified by utilizing LC ESI-MS/MS and HPLC. Moreover, network pharmacology and molecular docking were employed to examine the antispasmodic and bronchodilator effects of the bioactive substances in the extracts. In vitro and in vivo experiments were also conducted to validate the mechanistic insights gained from the in silico analysis. Results indicated the presence of kaempferol with a concentration of 813.74 µg/g (highest concentration) in the seed extract of C. sativus, followed by quercetin (713.83 µg/g), narcissin (681.87 µg/g), and orientin (676.19 µg/g). In silico investigations demonstrated that the bioactive chemicals in C. sativus seeds inhibited the expression of the target genes involved in smooth muscle contraction and calcium-mediated signaling. Sequential seed extracts of C. sativus caused a dose-dependent relaxant response for spasmolytic reaction and resulted in a relaxation of K+ (80 mM) spastic contraction. In animal models, C. sativus seed extracts exhibited partial or complete antiperistalsis, antidiarrheal, and antisecretory actions. By modulating the contractile response through calcium-mediated signaling target proteins, C. sativus seeds generated bronchodilator, antispasmodic, and antidiarrheal therapeutic effects.

12.
J Ethnopharmacol ; 295: 115314, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35490899

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Citrullus lanatus (Thunb.) belongs to the ground family, Cucurbitaceae, known for edible fruit. Besides nutritional benefits, the traditional herbal practitioners in Pakistan and India used their seeds to treat gastrointestinal, respiratory, and urinary disorders. In Northern Sudan, its seeds are often used as a laxative. Its root is laxative and emetic at a high dose. Its seeds are also used to treat bedwetting and urinary tract obstruction. AIM OF THE STUDY: This study aimed to elucidate the multi-target mechanisms of Citrullus lanatus seeds to treat asthma and diarrhea. The pharmacological experiments were designed and conducted, along with the pharmacology network and molecular docking predictions, to verify the seeds biopotency for antispasmodic and bronchodilator properties. METHODS: LC ESI-MS/MS were performed to identify the potentially active compounds in hydroethanolic extract of Citrullus lanatus seeds, then to quantify them by HPLC. The quantified bioactive compounds of Citrullus lanatus, i.e., stigmasterol, quinic acid, malic acid, epicatechin, caffeic acid, rutin, p-coumaric acid, quercetin, ferulic acid, scopoletin, apigenin, and kaempferol were subjected to in silico studies for molecular docking. The hydroethanolic extract of Citrullus lanatus seeds was examined on isolated rabbit tissue, i.e., jejunum, trachea, and urinary bladder. The antiperistalsis, antidiarrheal and antisecretory studies were also performed in animal models. RESULTS: In silico studies revealed that bioactive compounds of C. lanatus seeds interfere with asthma and diarrhea-associated target genes, which are a member of calcium mediate signaling, regulation of cytosolic calcium concentration, smooth muscle contraction, and inflammatory responses. It was also found that rutin, quercetin, kaempferol, and scopoletin were stronger binding to voltage-gated calcium channels, calcium/calmodulin-dependent protein kinase, myosin light chain kinase, and phosphoinositide phospholipase C, thus, exerting calcium channel blocker activity. The hydroethanolic extract of C. lanatus seeds exerted a concentration-dependent relaxant response for the spasmolytic response on isolated jejunum and trachea preparations and caused relaxation of spastic contraction of K+ (80 mM). Furthermore, it caused a non-parallel rightward shift with suppression of calcium concentration-response curves. In animal models, the Cl.EtOH showed antiperistalsis, antidiarrheal and antisecretory response. CONCLUSION: Thus, we confirm Citrullus lanatus seeds have some medicinal effects by regulating the contractile response through target proteins of calcium mediates signaling and can be a promising component in the medical treatment for asthma and diarrhea.


Asunto(s)
Asma , Citrullus , Animales , Antidiarreicos/química , Antidiarreicos/farmacología , Antidiarreicos/uso terapéutico , Asma/tratamiento farmacológico , Calcio , Citrullus/química , Diarrea/tratamiento farmacológico , Etanol/uso terapéutico , Quempferoles/uso terapéutico , Laxativos/uso terapéutico , Simulación del Acoplamiento Molecular , Pakistán , Parasimpatolíticos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Quercetina/uso terapéutico , Conejos , Rutina , Escopoletina , Semillas/química , Espectrometría de Masas en Tándem
13.
Phytomedicine ; 100: 154069, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364560

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) are a significant cause of morbidity and death in the current world, posing a challenge to both developing and industrialized nation's health systems. Citrullus lanatus (Thunb.) Matsum. & Nakai. seeds have long been utilized to supplement and enhance health and treat cardiovascular illnesses. However, its treatments for CVDs are still unknown. More research is required to fully comprehend the impact of C. lanatus seeds on vasorelaxation and myocardial infractions. PURPOSE: Therefore, an integrated metabolomics profiling technique was used to investigate possible pathways of C. lanatus in isoproterenol (ISO)-induced myocardial infarction (MI). Isoproterenol causes long-term cardiac hypertrophy by causing cardiomyocyte compensatory loss, eventually leading to heart failure. METHODS: In vitro models of vasoconstriction, atrium, and in vivo models of invasive blood pressure measurement and isoproterenol (ISO) induced cardiac hypertrophy in rats were used to understand underlying mechanistic by LC-MS/MS based dynamic metabolomics analysis of the serum and heart samples to be investigated the effect of ethanolic extract of C. lanatus (Cl.EtOH). RESULTS: Cl.EtOH exhibited vasorelaxant, negative chronotropic, and inotropic effects in in-vitro models whereas, a potent hypotensive effect was observed in normotensive rats. The Cl.EtOH protected the animals from ISO-induced myocardial infarction (MI) with therapeutic interventions in left ventricular thickness, cardiomyocyte hypertrophy, mRNA gene expression, biochemical assays, and metabolomic profiling of serum and heart tissues. CONCLUSIONS: For the first time, our study confirmed that C. lanatus seeds (Cl.EtOH) possess significant antihypertensive and prevent ISO-induced myocardial infarction. These findings comprehensively demonstrated mechanistic insights of Cl.EtOH in vasorelaxation and myocardial infarction. The current study provides evidence for further mechanistic studies and the development of C. lanatus seeds as a potential therapeutic intervention for patients with cardiovascular disorders.


Asunto(s)
Citrullus , Infarto del Miocardio , Animales , Cardiomegalia/tratamiento farmacológico , Cromatografía Liquida , Etanol/efectos adversos , Humanos , Isoproterenol/toxicidad , Metabolómica , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos , Extractos Vegetales/uso terapéutico , Ratas , Semillas , Espectrometría de Masas en Tándem , Vasodilatadores/uso terapéutico
14.
Dose Response ; 20(1): 15593258221079592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360455

RESUMEN

Panicum miliaceum L. is a medicinally effective plant used in indigenous system of medicine for a variety of ailments. However, there is no comprehensive study explaining its effectiveness in gastrointestinal tract, respiratory, and cardiovascular system ailments. This study was designed to validate the pharmacological basis for the folkloric use of Panicum miliaceum L. in diarrhea, asthma, and hypertension. Panicum miliaceum extract was analyzed to detect the presence of bioactive compounds by HPLC. The isolated rabbit jejunum, trachea, and aorta were used for in vitro experiments using tissue bath assembly coupled with Power Lab data acquisition system to explore their relative effects. In-vivo experiments were performed for anti-diarrheal activity. HPLC analysis revealed the presence of gallic acid, butylated hydroxytoluene, catechin, and quercetin. Concentration dependent activities were observed by relaxing K+ (low) induced contractions having spasmolytic effect with EC50 = .358 ± .052, bronchodilator (EC50 = 2.483 ± .05793), and vasorelaxant (EC50 = .383 ± .063), probably due to the ATP dependent potassium channel activation. It was confirmed through pre-exposure of glibenclamide (specific ATP-dependent K+ channel blocker) having similarities with cromakalim. Pm.Cr revealed its antidiarrheal via in vivo experiments on rats. This study indicates that Panicum miliaceum has antidiarrheal, spasmolytic, bronchodilator, and vasorelaxant activities probably due to the ATP dependent K+ channel activation.

15.
Biomed Pharmacother ; 148: 112704, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35180666

RESUMEN

Cucumis sativus L., widely cultivated as an edible vegetable. Its seeds are well reputed for cardiovascular preventive properties. However, the mechanisms underlying for cardiovascular protection of C. sativus are still unidentified. Therefore, this study utilized a metabolomics approach to investigate putative mechanisms of C. sativus seeds in myocardial infarction (MI) and in vitro models of vasoconstriction, atrium, and invasive blood pressure measurement. Results showed that Cu.EtOH extract showed a vasorelaxant response with potent hypotensive effect in normotensive rats and L-NAME induced hypertension. Cu.EtOH caused a negative inotropic and positive chronotropic effect on the atrium. Cu.EtOH protected the animals from ISO-induced myocardial infarction (MI) interventions in left ventricular thickness, cardiomyocyte hypertrophy, mRNA gene expression, and biochemical assays. The metabolomics data suggested that Cu.EtOH mainly affected amino acid metabolism, BCAA degradation, ketone bodies degradation, and oxidative stress. Our study showed that Cu.EtOH suppressed inflammation with a strong anti-myocardial infarction impact. Additionally, our findings indicated Cu.EtOH reverted the amino acid metabolism, BCAA, and ketone bodies degradation. The findings show the antihypertensive mechanism of Cu.EtOH may include the modulation of endothelium-derived relaxing factor (EDRF) produced from nitric oxide (NO) and is connected with vascular endothelial function. C. sativus seeds, in particular, played a pivotal role in the treatment of myocardial and vascular disorders by enhancing the EDRF mechanism, energy generation, and antioxidant capacity. In summary, our findings showed the mechanistic insights on the therapeutic potential of C. sativus seeds for cardiovascular disorders.


Asunto(s)
Cucumis sativus , Hipertensión , Infarto del Miocardio , Animales , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Isoproterenol/efectos adversos , Metabolómica , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Semillas
16.
Phytomedicine ; 98: 153978, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35158236

RESUMEN

BACKGROUND: Citrullus lanatus (Thunb.) is a member of the Cucurbitaceae family, commonly farmed as an edible vegetable around the globe. It has been used in traditional therapies in addition to nutritional advantages. Traditional herbal practitioners employ C. lanatus seeds to treat gastrointestinal, respiratory, and urinary diseases in Pakistan and India. However, more investigation is needed to understand the effect of C. lanatus seeds on treating gastrointestinal, respiratory, and urinary disorders. PURPOSE: This research aimed to use network pharmacology and molecular docking to understand multi-target mechanisms of C. lanatus seeds against asthma and diarrhea and to validate its effects using biological tests to investigate antispasmodic and bronchodilator capabilities. METHODS: The ground seeds of C. lanatus were extracted in hexane, dichloromethane, ethanol, and aqueous for sequential extracts. The bioactive components in sequential extracts of C. lanatus seeds were identified using LC ESI-MS/MS, and specific compounds were quantified using HPLC. The quantified bioactive compounds of C. lanatus were subjected to in silico studies for network pharmacology and molecular docking to elucidate their role in antispasmodic and bronchodilator properties. The sequential extracts were tested on isolated rabbit tissue, i.e., jejunum, trachea, and urinary bladder. The antiperistalsis, antidiarrheal and antisecretory studies were also performed in animal models. RESULTS: In silico studies indicate that bioactive chemicals from sequential extracts of C. lanatus seeds interfere with asthma and diarrhea-associated pathogenic genes. Those are members of calcium mediate signaling, cholinergic synapse, regulation of cytosolic calcium concentration, smooth muscle contraction, and inflammatory responses. It was also found that rutin, quercitrin, stearic acid, umbelliferone, and kaempferol were stronger binding to voltage-gated calcium channels and muscarinic M3 receptor, thus exerting calcium channel blocker activity and cholinergic receptor stimulant response. On isolated jejunum, trachea, and urinary preparations, sequential extracts of C. lanatus seeds elicited the spasmolytic response and showed the relaxation of spastic contractions of K+ (80 mM) and carbachol (1 µM). Furthermore, it induced a non-parallel rightward shift in calcium concentration-response curves with suppression. In animal models, C. lanatus seed extracts exhibited partially or completely antiperistalsis, antidiarrheal, and antisecretory effects. CONCLUSION: Thus, Citrullus lanatus had therapeutic benefits by modulating the contractile response through calcium-mediated signaling target proteins, hence exerting bronchodilator and antidiarrheal properties. The current study provides evidence for further mechanistic studies and the development of C. lanatus seeds as a potential therapeutic intervention for patients with gastrointestinal, respiratory, and urinary disorders.

17.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832981

RESUMEN

Cucumis sativus L. is globally cultivated as an edible vegetable. Besides its nutritional benefits, it is used in traditional medicines against various ailments. The current study was designed to elucidate the multi-target mechanisms of a C. sativus seeds extract against asthma and diarrhea using network pharmacology along with a molecular docking approach. Furthermore, in-vitro and in-vivo experiments were conducted to verify the mechanistic insight of in silico studies. LC-ESI-MS/MS was performed to identify the bioactive compounds in the extract; later, some compounds were quantified by HPLC. C. sativus seed. EtOH has kaempferol in higher concentration 783.02 µg/g, followed by quercetin (693.83 µg/g) and luteolin (617.17 µg/g). In silico studies showed that bioactive compounds interfered with asthma and diarrhea-associated target genes, which are members of calcium-mediated signaling to exert a calcium channel blocker activity. The seeds extract exerted a concentration-dependent spasmolytic response on isolated jejunum, trachea, and urinary bladder preparations and caused relaxation of spastic contraction of K+ (80 mM) with suppressed calcium concentration-response curves at dose 0.3 and 1 mg/mL. It also showed antiperistalsis, antidiarrheal and antisecretory activity in animal models. Thus, C. sativus seeds have therapeutic effects by regulating the contractile response through a calcium-mediated signaling pathway.

18.
Biomed Pharmacother ; 142: 112065, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34449312

RESUMEN

Populus ciliata Wall ex. Royle has folkloric repute to treat various cardiovascular ailments and related disorders. The current study was designed to evaluate the toxic profile, cardioprotective and hypotensive effects of Populus ciliata (Wall. ex Royle). Populus ciliata crude ethanolic extract (Pc. Cr) and its aqueous (Pc. Aq) & organic (Pc. Dcm) fractions were tested on isolated aorta of rat and rabbit having intact and non-intact endothelium respectively. Pc. Cr & Pc. Aq relaxed the contractions induced by PE (1 µM)-induced and K+ (80 mM)-induced on aorta, possibly by mediating endothelium derived relaxing factor (EDRF) in intact endothelium and voltage dependent L-type calcium channels blocking (CCB) mechanism in non-intact endothelium. Pc. Cr showed anti-hypertensive & cardioprotective activity by decreasing force of contraction & heart rate on isolated rabbit paired atria and reduced blood pressure in anesthetized rat. Cardioprotective effect of Pc. Cr was assessed in isoproterenol induced acute myocardial infarction (AMI) and left ventricular hypertrophy (LVH) in Sprague Dawley rats. In LVH, Pc. Cr exerted positive effects by decreasing angiotensin II & renin and increasing cGMP & nitric oxide (NO) with reduced cardiac fibrosis, necrosis and cardiac cell size. In AMI, Pc. Cr responded effectively by decreasing cardiac markers creatinine kinase (CK), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LD) in blood associated with less edema and necrosis. Presence of catechin, vinallic acid, P-coumeric acid and quercitin identified through HPLC support the effectiveness of Pc. Cr in hypertension, AMI and LVH. Pc. Cr showed no significant adverse effects in Sprague Dawley albino rats after acute & sub-acute treatment in histopathological investigation. Extract of Populus ciliata showed vasorelaxant, hypotensive and cardioprotective effect in Sprague Dawley albino rats and white albino rabbit by mediating EDRF and voltage dependent L-type CCB mechanism respectively.


Asunto(s)
Antihipertensivos/farmacología , Cardiotónicos/farmacología , Extractos Vegetales/farmacología , Populus/química , Animales , Antihipertensivos/aislamiento & purificación , Antihipertensivos/toxicidad , Canales de Calcio Tipo L/metabolismo , Cardiotónicos/aislamiento & purificación , Cardiotónicos/toxicidad , Factores Relajantes Endotelio-Dependientes/metabolismo , Femenino , Hipertensión/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/prevención & control , Masculino , Infarto del Miocardio/prevención & control , Extractos Vegetales/toxicidad , Conejos , Ratas , Ratas Sprague-Dawley , Vasodilatadores/aislamiento & purificación , Vasodilatadores/farmacología
19.
Phytother Res ; 35(5): 2336-2385, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33617115

RESUMEN

Nature gifts medicinal plants with the untapped and boundless treasure of active chemical constituents with significant therapeutic potential that makes these plants a beneficial source in the development of phytomedicines. Genus Cassia, with approximately 500 species, is a large group of flowering plants in the family Fabaceae. Cassia species are widely distributed throughout different regions mainly tropical Asia, North America, and East Africa. In the folk medicinal history, these plants are used as laxative and purgative agents. In the Ayurveda system of medicine, they are used to cure headache and fever. Cassia plants exhibit pharmacological activities at large scales such as antimicrobial, anticancer, antiinflammatory, antioxidant, hypoglycemic, hyperglycemic, antimutagenic, and antivirals. The phytochemical investigations of genus Cassia demonstrate the presence of more than 200 chemical compounds, including piperidine alkaloids, anthracene derivatives (anthraquinones), flavonoids, pentacyclic triterpenoids, sterols, phenylpropanoids, and γ-naphthopyrones. The literature illustrated anthraquinones and flavonoids as major secondary metabolites from this genus. However, some Cassia plants, with rich contents of anthraquinones, still show toxicology properties. As Cassia plants are used extensively in the herbal system of medicine, but only senna dosage forms have achieved the status of the pharmaceutical market as standard laxative agents. In conclusion, further investigations on isolating newer biologically active constituents, unknown underlying mechanisms, toxicology profiles, and clinical studies of Cassia species are needed to be explored. This review article specifies the systematic breach existing between the current scientific knowledge and the fundamentals for the marketization of genus Cassia products.

20.
Plants (Basel) ; 11(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35009082

RESUMEN

Himalaiella heteromalla (D.Don) Raab-Straube is a commonly used remedy against various diseases. Crude extract and fractions of H. heteromalla were investigated for a gastrointestinal, bronchodilator, cardiovascular, and anti-inflammatory activities. H. heteromalla crude extract (Hh.Cr) relaxed spontaneous contractions and K+ (80 mM)-induced contraction in jejunum tissue dose-dependently. The relaxation of K+ (80 mM) indicates the presence of Ca++ channel blocking (CCB) effect, which was further confirmed by constructing calcium response curves (CRCs) as they caused rightward parallel shift of CRCs in a manner comparable to verapamil, so the spasmolytic effect of Hh.Cr was due to its CCB activity. Application of Hh.Cr on CCh (1 µM) and K+ (80 mM)-induced contraction in tracheal preparation resulted in complete relaxation, showing its bronchodilator effect mediated through Ca++ channels and cholinergic antagonist activity. Application of Hh.Cr on aortic preparations exhibited vasorelaxant activity through angiotensin and α-adrenergic receptors blockage. It also showed the cardio suppressant effect with negative chronotropic and inotropic response in paired atrium preparation. Similar effects were observed in in vivo models, i.e., decreased propulsive movement, wet feces, and inhibition of edema formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA