Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Hazard Mater ; 471: 134277, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38657505

This study investigates the presence of biocides and other semi-volatile organic compounds (SVOCs) in cleaning products used in daycare centers and health impact through ingestion of settled dust by young children. In Paris metropolitan area, 106 daycares area were investigated between 2019-2022. Fifteen substances were analyzed in settled indoor dust by gas chromatography-tandem mass spectrometry. Detection rates and concentrations ranged from 5 to 100%, and

Air Pollution, Indoor , Child Day Care Centers , Disinfectants , Dust , Volatile Organic Compounds , Dust/analysis , Humans , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Disinfectants/analysis , Infant , Public Health , Environmental Monitoring , Child, Preschool
2.
Environ Pollut ; 319: 120945, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36572272

Diffuse pollution of the environment by pesticides has become a major soil threat to non-target organisms, such as earthworms for which declines have been reported. However some endogeic species are still abundant and persist in intensively cultivated fields, suggesting they become tolerant to long-term anthropogenic pressure. We thus considered the working hypothesis that populations of Aporrectodea caliginosa earthworms from conventionally managed fields developed a tolerance to pesticides compared with those from organically managed fields. To investigate this hypothesis, we studied earthworm populations of the same genetic lineage from soils that were either lowly or highly contaminated by pesticides to detect any constitutive expression of differentially expressed molecular pathways between these populations. Earthworm populations were then experimentally exposed to a fungicide-epoxiconazole-in the laboratory to identify different molecular responses when newly exposed to a pesticide. State-of-the-art omics technology (RNA sequencing) and bioinformatics were used to characterize molecular mechanisms of tolerance in a non-targeted way. Additional physiological traits (respirometry, growth, bioaccumulation) were monitored to assess tolerance at higher levels of biological organization. In the present study, we generated the de novo assembly transcriptome of A. caliginosa consisting of 64,556 contigs with N50 = 2862 pb. In total, 43,569 Gene Ontology terms were identified for 21,593 annotated sequences under the three main ontologies (biological processes, cellular components and molecular functions). Overall, we revealed that two same lineage populations of A. caliginosa earthworms, inhabiting similar pedo-climatic environment, have distinct gene expression pathways after they long-lived in differently managed agricultural soils with a contrasted pesticide exposure history for more than 22 years. The main difference was observed regarding metabolism, with upregulated pathways linked to proteolytic activities and the mitochondrial respiratory chain in the highly exposed population. This study improves our understanding of the long-term impact of chronic exposure of soil engineers to pesticide residues.


Fungicides, Industrial , Oligochaeta , Pesticides , Soil Pollutants , Animals , Pesticides/toxicity , Pesticides/metabolism , Oligochaeta/metabolism , Agriculture , Soil/chemistry , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism , Soil Pollutants/analysis
3.
J Chromatogr A ; 1336: 101-11, 2014 Apr 04.
Article En | MEDLINE | ID: mdl-24598454

People are exposed to multiple pollutants, especially indoors, in particular through ingestion of indoor settled dust. In the perspective of a cumulative risk assessment, a multi-residue analytical method based on pressurized liquid extraction (PLE) and gas chromatography/tandem mass spectrometry (GC/MS/MS) was developed for the simultaneous analysis in indoor dust of several classes of semi-volatile organic compounds (SVOCs) of health concern, from trace to highly concentrated compounds, including musk fragrances, organochlorines (OCs), organophosphates (OPs), polycyclic aromatic hydrocarbons (PAHs), polybromodiphenylethers (PBDEs), polychlorobiphenyls (PCBs), phthalates and pyrethroids. The method was validated in terms of limits of quantification (LOQ), and accuracy and precision via spiking experiments on an inert material (Celite(®) 545) and replicate analysis of the standard reference material SRM 2585 supplied by the National Institute of Standards and Technology (NIST). Method LOQs for 200 mg samples of sieved dust were 26 ng g(-1) for PCBs and some OCs, 65 ng g(-1) for musks, OPs, PAHs, PBDEs, pyrethroids, other OCs and some phthalates, 132 ng g(-1) for butylbenzylphthalate (BBP), 197 ng g(-1) for tributylphosphate and 1579 ng g(-1) for other phthalates. Quadratic calibration curves were established for each compound by analyzing at least five calibration solutions and exhibited determination coefficients higher than 0.999. The method was successfully applied to the SRM 2585 and seven real indoor dust samples. The results obtained on SRM 2585 demonstrate both excellent reproducibility and agreement with the indicative, reference or certified values and provide, for the first time, indicative concentrations for chlorpyrifos, diazinon, diisononylphthalate (DiNP) and tetramethrin. The results obtained on real dust samples illustrate the ability of the proposed method to quantify a wide range of SVOCs in a single analysis, making it appropriate for environmental monitoring programs or large-scale studies with a large number of samples.


Dust/analysis , Environmental Pollutants/analysis , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Environmental Monitoring/methods , Environmental Pollutants/isolation & purification , Volatile Organic Compounds/isolation & purification
...