Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
J Neurosci ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38749703

Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand mediated activation hindering myelin repair. Following chronic cuprizone induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase (AChE) / butyrylcholinesterase (BChE) mediated degradation. Using ChAT reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and cuprizone demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin induced demyelination. In cuprizone demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following cuprizone demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.Significance Statement Demyelinating diseases like Multiple Sclerosis are characterized by failure of remyelination. Oligodendrocyte progenitor cell (OPC) recruitment and differentiation are crucial aspects for remyelination to occur. Here we show that increased acetylcholine (ACh) contributes to activation of muscarinic receptors that inhibit OPC differentiation. Increased choline acetyltransferase synthesis following demyelination was observed in axons and astrocytes suggestive of a potential for acetylcholine synthesis and release. The increase in ACh levels following demyelination was largely due to reduction of oligodendrocyte derived butyrylcholinesterase that modulates ACh concentration. Development of cell specific esterase stimulator to restore ACh levels may serve as an approach towards inhibiting ongoing demyelination and neurodegeneration.

2.
Glia ; 71(4): 1018-1035, 2023 04.
Article En | MEDLINE | ID: mdl-36537341

The failure of remyelination in the human CNS contributes to axonal injury and disease progression in multiple sclerosis (MS). In contrast to regions of chronic demyelination in the human brain, remyelination in murine models is preceded by abundant oligodendrocyte progenitor cell (OPC) repopulation, such that OPC density within regions of demyelination far exceeds that of normal white matter (NWM). As such, we hypothesized that efficient OPC repopulation was a prerequisite of successful remyelination, and that increased lesion volume may contribute to the failure of OPC repopulation in human brain. In this study, we characterized the pattern of OPC activation and proliferation following induction of lysolecithin-induced chronic demyelination in adult rabbits. The density of OPCs never exceeded that of NWM and oligodendrocyte density did not recover even at 6 months post-injection. Rabbit OPC recruitment in large lesions was further characterized by chronic Sox2 expression in OPCs located in the lesion core and upregulation of quiescence-associated Prrx1 mRNA at the lesion border. Surprisingly, when small rabbit lesions of equivalent size to mouse were induced, they too exhibited reduced OPC repopulation. However, small lesions were distinct from large lesions as they displayed an almost complete lack of OPC proliferation following demyelination. These differences in the response to demyelination suggest that both volume dependent and species-specific mechanisms are critical in the regulation of OPC proliferation and lesion repopulation and suggest that alternate models will be necessary to fully understand the mechanisms that contribute to failed remyelination in MS.


Demyelinating Diseases , Multiple Sclerosis , Oligodendrocyte Precursor Cells , Animals , Rabbits , Cell Differentiation/physiology , Demyelinating Diseases/pathology , Homeodomain Proteins/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Nerve Regeneration/physiology , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Stem Cells/metabolism , Disease Models, Animal
3.
Nat Commun ; 12(1): 1923, 2021 03 26.
Article En | MEDLINE | ID: mdl-33772011

Chronic demyelination in the human CNS is characterized by an inhibitory microenvironment that impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extracellular endosulfatase, modulates the signaling microenvironment by editing the pattern of sulfation on heparan sulfate proteoglycans. We found that Sulf2 was increased in demyelinating lesions in multiple sclerosis and was actively secreted by human OPCs. In experimental demyelination, elevated OPC Sulf1/2 expression directly impaired progenitor recruitment and subsequent generation of oligodendrocytes thereby limiting remyelination. Sulf1/2 potentiates the inhibitory microenvironment by promoting BMP and WNT signaling in OPCs. Importantly, pharmacological sulfatase inhibition using PI-88 accelerated oligodendrocyte recruitment and remyelination by blocking OPC-expressed sulfatases. Our findings define an important inhibitory role of Sulf1/2 and highlight the potential for modulation of the heparanome in the treatment of chronic demyelinating disease.


Cell Differentiation/genetics , Cellular Microenvironment/genetics , Demyelinating Diseases/genetics , Gene Expression Profiling/methods , Oligodendrocyte Precursor Cells/metabolism , Remyelination/genetics , Animals , Axons/metabolism , Cells, Cultured , Demyelinating Diseases/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Oligodendrocyte Precursor Cells/cytology , Sulfatases/genetics , Sulfatases/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism
4.
J Neurosci ; 41(10): 2245-2263, 2021 03 10.
Article En | MEDLINE | ID: mdl-33472827

The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.


Demyelinating Autoimmune Diseases, CNS/metabolism , Heparan Sulfate Proteoglycans/metabolism , Interferon-gamma/metabolism , Oligodendrocyte Precursor Cells/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Demyelinating Autoimmune Diseases, CNS/pathology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout
5.
J Am Soc Mass Spectrom ; 31(12): 2462-2468, 2020 Dec 02.
Article En | MEDLINE | ID: mdl-32926612

Destruction of myelin, or demyelination, is a characteristic of traumatic spinal cord injury and pathognomonic for primary demyelinating pathologies such as multiple sclerosis (MS). The regenerative process known as remyelination, which can occur following demyelination, fails as MS progresses. Models of focal demyelination by local injection of gliotoxins have provided important biological insights into the demyelination/remyelination process. Here, injection of lysolecithin to induce spinal cord demyelination is investigated using matrix-assisted laser desorption/ionization mass spectrometry imaging. A segmentation analysis revealed changes to the lipid composition during lysolecithin-induced demyelination at the lesion site and subsequent remyelination over time. The results of this study can be utilized to identify potential myelin-repair mechanisms and in the design of therapeutic strategies to enhance myelin repair.


Demyelinating Diseases/pathology , Myelin Sheath/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spinal Cord/pathology , Animals , Demyelinating Diseases/chemically induced , Disease Models, Animal , Female , Lipids/analysis , Lysophosphatidylcholines/adverse effects , Mice, Inbred BALB C , Myelin Sheath/chemistry , Remyelination , Spinal Cord/chemistry
6.
Cell Rep ; 25(12): 3435-3450.e6, 2018 12 18.
Article En | MEDLINE | ID: mdl-30566868

Human oligodendrocyte progenitor cells (hOPCs) persist into adulthood as an abundant precursor population capable of division and differentiation. The transcriptional mechanisms that regulate hOPC homeostasis remain poorly defined. Herein, we identify paired related homeobox protein 1 (PRRX1) in primary PDGFαR+ hOPCs. We show that enforced PRRX1 expression results in reversible G1/0 arrest. While both PRRX1 splice variants reduce hOPC proliferation, only PRRX1a abrogates migration. hOPC engraftment into hypomyelinated shiverer/rag2 mouse brain is severely impaired by PRRX1a, characterized by reduced cell proliferation and migration. PRRX1 induces a gene expression signature characteristic of stem cell quiescence. Both IFN-γ and BMP signaling upregulate PRRX1 and induce quiescence. PRRX1 knockdown modulates IFN-γ-induced quiescence. In mouse brain, PRRX1 mRNA was detected in non-dividing OPCs and is upregulated in OPCs following demyelination. Together, these data identify PRRX1 as a regulator of quiescence in hOPCs and as a potential regulator of pathological quiescence.


Cell Cycle , Homeodomain Proteins/metabolism , Oligodendrocyte Precursor Cells/cytology , Oligodendrocyte Precursor Cells/metabolism , Animals , Bone Morphogenetic Proteins/pharmacology , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Gene Expression Regulation/drug effects , Humans , Interferon-gamma/pharmacology , Ki-67 Antigen/metabolism , Mice , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/transplantation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects , White Matter/metabolism , White Matter/pathology
7.
Sci Rep ; 7(1): 2908, 2017 06 06.
Article En | MEDLINE | ID: mdl-28588252

Candida albicans is an opportunistic fungal pathogen colonizing the oral cavity. C. albicans secreted aspartic protease Sap6 is important for virulence during oral candidiasis since it degrades host tissues to release nutrients and essential transition metals. We found that zinc specifically increased C. albicans autoaggregation induced by Sap6; and that Sap6 itself bound zinc ions. In silico analysis of Sap6 predicted four amyloidogenic regions that were synthesized as peptides (P1-P4). All peptides, as well as full length Sap6, demonstrated amyloid properties, and addition of zinc further increased amyloid formation. Disruption of amyloid regions by Congo red significantly reduced auotoaggregation. Deletion of C. albicans genes that control zinc acquisition in the ZAP1 regulon, including zinc transporters (Pra1 and Zrt1) and other zinc-regulated surface proteins, resulted in lower autoaggregation and reduction of surface binding of Sap6. Cells with high expression of PRA1 and ZRT1 also showed increased Sap6-mediated autoaggregation. C. albicans ∆sap6 deletion mutants failed to accumulate intracellular zinc comparable to ∆zap1, ∆zrt1, and ∆pra1 cells. Thus Sap6 is a multi-functional molecule containing amyloid regions that promotes autoaggregation and zinc uptake, and may serve as an additional system for the community acquisition of zinc.


Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Candida albicans/genetics , Candida albicans/metabolism , Cell Aggregation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Zinc/metabolism , Amyloidogenic Proteins/chemistry , Aspartic Acid Endopeptidases/chemistry , Carrier Proteins , Extracellular Space/metabolism , Fungal Proteins/chemistry , Gene Expression Regulation , Models, Molecular , Protein Aggregates , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs
8.
Mol Microbiol ; 100(3): 425-41, 2016 05.
Article En | MEDLINE | ID: mdl-26749104

Temperature is a potent inducer of fungal dimorphism. Multiple signalling pathways control the response to growth at high temperature, but the sensors that regulate these pathways are poorly defined. We show here that the signalling mucin Msb2 is a global regulator of temperature stress in the fungal pathogen Candida albicans. Msb2 was required for survival and hyphae formation at 42°C. The cytoplasmic signalling domain of Msb2 regulated temperature-dependent activation of the CEK mitogen activated proteins kinase (MAPK) pathway. The extracellular glycosylated domain of Msb2 (100-900 amino acid residues) had a new and unexpected role in regulating the protein kinase C (PKC) pathway. Msb2 also regulated temperature-dependent induction of genes encoding regulators and targets of the unfolded protein response (UPR), which is a protein quality control (QC) pathway in the endoplasmic reticulum that controls protein folding/degradation in response to high temperature and other stresses. The heat shock protein and cell wall component Ssa1 was also required for hyphae formation and survival at 42°C and regulated the CEK and PKC pathways.


Adaptation, Physiological/genetics , Candida albicans/metabolism , Heat-Shock Response/physiology , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Signaling System/physiology , Unfolded Protein Response/genetics , Candida albicans/genetics , Candida albicans/growth & development , Cell Wall/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Fungal , HSP70 Heat-Shock Proteins/metabolism , Hot Temperature , Hyphae/genetics , Hyphae/growth & development , Mitogen-Activated Protein Kinases/metabolism , Protein Kinase C/metabolism
9.
Pathogens ; 4(4): 752-63, 2015 Oct 30.
Article En | MEDLINE | ID: mdl-26529023

Salivary Histatin 5 (Hst 5) is an antimicrobial peptide that exhibits potent antifungal activity towards Candida albicans, the causative agent of oral candidiasis. However, it exhibits limited activity in vivo, largely due to inactivation by salivary components of both host and pathogen origin. Proteins secreted by C. albicans during infection such as secreted aspartyl proteases (Saps) and shed mucin Msb2 can reduce Hst 5 activity; and human salivary mucins, while suggested to protect Hst 5 from proteolytic degradation, can entrap peptides into mucin gels, thereby reducing bioavailability. We show here that Sap6 that is secreted during hyphal growth reduces Hst 5 activity, most likely a result of proteolytic degradation of Hst 5 since this effect is abrogated with heat inactivated Sap 6. We further show that just like C. albicans shedding Msb2, mammalian mucins, fetuin and porcine gut mucin (that is related to salivary mucins), also reduce Hst 5 activity. However, we identify mucin-like protein-induced changes in C. albicans cell morphology and aggregation patterns, suggesting that the effect of such proteins on Hst 5 cannot be interpreted independently of their effect on yeast cells.

10.
Infect Immun ; 83(7): 2614-26, 2015 Jul.
Article En | MEDLINE | ID: mdl-25870228

Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.


Aspartic Acid Endopeptidases/metabolism , Candida albicans/physiology , Candidiasis, Oral/microbiology , Cell Adhesion , Fungal Proteins/metabolism , Virulence Factors/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Candida albicans/genetics , Candidiasis, Oral/pathology , Cell Survival , Disease Models, Animal , Epithelial Cells/microbiology , Female , Fungal Proteins/genetics , Gene Deletion , Mice, Inbred C57BL , Virulence , Virulence Factors/genetics
11.
Mitochondrial DNA ; 25(1): 70-7, 2014 Feb.
Article En | MEDLINE | ID: mdl-23676141

Clupisoma garua (Hamilton, 1822) is a commercially important freshwater fish and a potential candidate species for aquaculture. This study investigates the genetic diversity and population structure of six Indian populations of C. garua using cytochrome b (cyt b) sequences of mitochondrial DNA (mtDNA). We sequenced cyt b gene of 64 individuals collected from five distant rivers: Ganga, Gomti, Betwa, Gandak and Brahmaputra. Sequencing of 1054 bp cyt b mtDNA fragment revealed the presence of 19 haplotypes with a haplotype diversity value of 1.000 and a nucleotide diversity value of 0.0258 ± 0.00164. The Gandak river fish population showed highest nucleotide diversity. The fixation index analysis indicated significant genetic divergence among populations from different geographical areas. Both the neighbor-joining tree and median-joining network analysis of the haplotype data showed distinct patterns of phylo-geographic structure. The hierarchical analysis of molecular variance revealed that intra-group variation among populations was highly significant. The results of this study suggest that C. garua populations, especially geographically isolated groups, have developed significant genetic structures within the population. In addition, tests of neutrality suggest that C. garua may have experienced a population expansion. The study results establish cyt b as polymorphic and a potential marker to determine the population structure of C. garua. Information of genetic variation and population structure generated from this study would be useful for planning effective strategies for the conservation and rehabilitation of Schilibid cat fishes.


Catfishes/genetics , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Phylogeny , Animals , Aquaculture/methods , Base Sequence , Cluster Analysis , Conservation of Natural Resources/methods , Genetic Markers/genetics , Haplotypes/genetics , India , Molecular Sequence Data , Phylogeography , Rivers , Sequence Analysis, DNA
12.
J Biol Chem ; 286(51): 43748-43758, 2011 Dec 23.
Article En | MEDLINE | ID: mdl-22033918

Histatin 5 (Hst 5) is a salivary gland-secreted cationic peptide with potent fungicidal activity against Candida albicans. Hst 5 kills fungal cells following intracellular translocation, although its selective transport mechanism is unknown. C. albicans cells grown in the presence of polyamines were resistant to Hst 5 due to reduced intracellular uptake, suggesting that this cationic peptide may enter candidal cells through native yeast polyamine transporters. Based upon homology to known Saccharomyces cerevisiae polyamine permeases, we identified six C. albicans Dur polyamine transporter family members and propose a new nomenclature. Gene deletion mutants were constructed for C. albicans polyamine transporters Dur3, Dur31, Dur33, Dur34, and were tested for Hst 5 sensitivity and uptake of spermidine. We found spermidine uptake and Hst 5 mediated killing were decreased significantly in Δdur3, Δdur31, and Δdur3/Δdur31 strains; whereas a DUR3 overexpression strain increased Hst 5 sensitivity and higher spermidine uptake. Treatment of cells with a spermidine synthase inhibitor increased spermidine uptake and Hst 5 killing, whereas protonophores and cold treatment reduced spermidine uptake. Inhibition assays showed that Hst 5 is a competitive analog of spermidine for uptake into C. albicans cells, and that Hst 5 Ki values were increased by 80-fold in Δdur3/Δdur31 cells. Thus, Dur3p and Dur31p are preferential spermidine transporters used by Hst 5 for its entry into candidal cells. Understanding of polyamine transporter-mediated internalization of Hst 5 provides new insights into the uptake mechanism for C. albicans toxicity, and further suggests design for targeted fungal therapeutic agents.


Candida albicans/metabolism , Cation Transport Proteins/metabolism , Gene Expression Regulation, Fungal , Histatins/metabolism , Membrane Transport Proteins/metabolism , Polyamines/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Anti-Infective Agents/pharmacology , Binding, Competitive , Boron Compounds/chemistry , Cation Transport Proteins/chemistry , Kinetics , Membrane Transport Proteins/chemistry , Microscopy, Confocal/methods , Phylogeny , Plasmids/metabolism , Protein Transport , Saccharomyces cerevisiae Proteins/chemistry , Spermidine/chemistry , Time Factors
...