Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36079299

RESUMEN

The Laser Powder-Bed Fusion (LPBF) process produces complex part geometry by selectively sintering powder metal layer upon layer. During the LPBF process, parts experience the challenge of residual stress, distortions, and print failures. Lattice-based structures are used to support overhang parts and reduce distortion; this lattice support has complex geometry and demands high computational effort to predict distortion using simulation. This study proposes a computational efforts reduction strategy by replacing complex lattice support geometry with homogenization using experimentally determined mechanical properties. Many homogenization models have been established to relate the lattice topology and material properties to the observed mechanical properties, like the Gibson-Ashby model. However, these predicted properties vary from as printed lattice geometry. In this work, the power-law relationship of mechanical properties for additively manufactured Inconel 718 part is obtained using tensile tests of various lattice support topologies and the model is used for homogenization in simulation. The model's accuracy in predicting distortion in printed parts is demonstrated using simulation results for a cantilever model. Simulation studies show that computational speed is significantly increased (6-7 times) using the homogenization technique without compromising the accuracy of distortion prediction.

2.
Clin Exp Pharmacol Physiol ; 49(2): 242-253, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34706396

RESUMEN

This study presents electrical modelling of the arterial system to understand the effect of adrenaline on the aortae and small arteries in terms of their resistance and compliance. There is no categorical documentation in the current literature on the precise locations of arterial resistance (R) and compliance (C) in vasculature. Knowledge of their exact locations in the arterial tree enables re-assessment of the differential action of vasoactive drugs on resistance versus compliance vessels once we resolve beat-to-beat changes in R and C in response to these drugs. Isolated goat aortae and small arteries were perfused with a pulsatile pump and lumen pressures were recorded before and after addition of adrenaline. Equivalent electrical models were simulated, and biological data was compared against the electrical equivalents to derive interpretations. In the aortae, systolic pressure increased, diastolic pressure decreased, pulse pressure increased (P = .018); but the mean pressure remained the same (P = .357). Whereas in small artery, vasoconstriction caused an increase in systolic, diastolic, and mean pressures (P = .028). Simulations allow us to infer that vasoconstriction in the aorta leads to a reduction in compliance, but an increase in resistance if any, is not sufficient to alter the mean aortic pressure. Whereas vasoconstriction in small arteries increases resistance, but a decrease in compliance, if any, does not affect any of the pressure parameters measured. The presented study is first of its kind to give experimental evidence that large arteries and aorta are the only compliance vessels and small arteries are the only resistance vessels.


Asunto(s)
Arterias , Arterias/fisiología , Presión Sanguínea/fisiología , Adaptabilidad , Sístole , Resistencia Vascular
3.
Mil Med ; 186(Suppl 1): 619-624, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33499461

RESUMEN

INTRODUCTION: Size-matched volunteer studies report gender-dependent variations in spine morphology, and head mass and inertia properties. The objective of this study was to determine the influence of these properties on upper and lower cervical spine temporal kinematics during G+x loading. METHODS: Parametrized three-dimensional head-neck finite element models were used, and impacts were applied at 1.8 and 2.6 m/s at the distal end. Details are given in the article. Contributions of population-based variations in morphological and mass-related variables on temporal kinematics were evaluated using sensitivity analysis. Influence of variations on time to maximum nonphysiological curve formation, and flexion of upper and extension of the lower spines were analyzed for male-like and female-like spines. RESULTS: Upper and lower spines responded with initial flexion and extension, resulting in a nonphysiological curve. Time to maximum nonphysiological curve and range of motions (ROMs) of the cervical column ranged from 45 to 66 ms, and 30 to 42 deg. Vertebral depth and location of the head center of gravity (cg) along anteroposterior axis were most influential variables for the upper spine flexion. Location of head cg along anteroposterior axis had the greatest influence on the time of the curve. Both anteroposterior and vertical locations of head cg, disc height, vertebral depth, head mass, and size were influential for the lower spine extension kinematics. CONCLUSIONS: Models with lesser vertebral depth, that is, female-like spines, experienced greater range of motions and pronounced nonphysiological curves. This results in greater distraction/stretch of the posterior upper spine complex, a phenomenon attributed to suboccipital headaches. Forward location of head cg along anteroposterior axis had the greatest influence on upper and lower spine motions and time of formation of the curve. Any increased anteroposterior location of cg attributable to head supported mass may induce greater risk of injuries/neck pain in women during G+x loading.


Asunto(s)
Cuello , Fenómenos Biomecánicos , Vértebras Cervicales , Femenino , Cabeza , Humanos , Masculino , Rango del Movimiento Articular
4.
J Biomech Eng ; 141(11)2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31053837

RESUMEN

Whiplash injuries continue to be a concern in low-speed rear impact. This study was designed to investigate the role of variations in spine morphology and head inertia properties on cervical spine segmental rotation in rear-impact whiplash loading. Vertebral morphology is rarely considered as an input parameter in spine finite element (FE) models. A methodology toward considering morphological variations as input parameters and identifying the influential variations is presented in this paper. A cervical spine FE model, with its morphology parametrized using mesh morphing, was used to study the influence of disk height, anteroposterior vertebral depth, and segmental size, as well as variations in head mass, moment of inertia, and center of mass locations. The influence of these variations on the characteristic S-curve formation in whiplash response was evaluated using the peak C2-C3 flexion marking the maximum S-curve formation and time taken for the formation of maximum S-curve. The peak C2-C3 flexion in the S-curve formation was most influenced by disk height and vertebral depth, followed by anteroposterior head center of mass location. The time to maximum S-curve was most influenced by the anteroposterior location of head center of mass. The influence of gender-dependent variations, such as the vertebral depth, suggests that they contribute to the greater segmental rotations observed in females resulting in different S-curve formation from men. These results suggest that both spine morphology and head inertia properties should be considered to describe rear-impact responses.

5.
J Biomech ; 85: 18-26, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30704760

RESUMEN

Cervical spine finite element models reported in biomechanical literature usually represent a static morphology. Not considering morphology as a model parameter limits the predictive capabilities for applications in personalized medicine, a growing trend in modern clinical practice. The objective of the study was to investigate the influence of variations in spinal morphology on the flexion-extension responses, utilizing mesh-morphing-based parametrization and metamodel-based sensitivity analysis. A C5-C6 segment was used as the baseline model. Variations of intervertebral disc height, facet joint slope, facet joint articular processes height, vertebral body anterior-posterior depth, and segment size were parametrized. In addition, material property variations of ligaments were considered for sensitivity analysis. The influence of these variations on vertebral rotation and forces in the ligaments were analyzed. The disc height, segmental size, and body depth were found to be the most influential (in the cited order) morphology variations; while among the ligament material property variations, capsular ligament and ligamentum flavum influenced vertebral rotation the most. Changes in disc height influenced forces in the posterior ligaments, indicating that changes in the anterior load-bearing column of the spine could have consequences on the posterior column. A method to identify influential morphology variations is presented in this work, which will help automation efforts in modeling to focus on variations that matter. This study underscores the importance of incorporating influential morphology parameters, easily obtained through computed tomography/magnetic resonance images, to better predict subject-specific biomechanical responses for applications in personalized medicine.


Asunto(s)
Vértebras Cervicales/anatomía & histología , Vértebras Cervicales/fisiología , Análisis de Elementos Finitos , Ligamentos Articulares/fisiología , Modelos Biológicos , Fenómenos Biomecánicos , Humanos , Disco Intervertebral/anatomía & histología , Masculino , Rango del Movimiento Articular/fisiología , Rotación , Soporte de Peso/fisiología , Articulación Cigapofisaria/anatomía & histología
6.
Asian Spine J ; 12(3): 398-406, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29879765

RESUMEN

STUDY DESIGN: A biomechanical study. PURPOSE: A new biomechanical model of the vertebra has been developed that accounts for the inhomogeneity of bone and the contribution of the pedicle toward the holding strength of a pedicle screw. OVERVIEW OF LITERATURE: Pullout strength studies are typically carried out on rigid polyurethane foams that represent the homogeneous vertebral framework of the spine. However, the contribution of the pedicle region, which contributes to the inhomogeneity in this framework, has not been considered in previous investigations. Therefore, we propose a new biomechanical model that can account for the vertebral inhomogeneity, especially the contribution of the pedicles toward the pullout strength of the pedicle screw. METHODS: A bilayer foam model was developed by joining two foams representing the pedicle and the vertebra. The results of the pullout strength tests performed on the foam models were compared with those from the tests performed on the cadaver lumbar vertebra. RESULTS: Significant differences (p <0.05) were observed between the pullout strength of the pedicle screw in extremely osteoporotic (0.18±0.11 kN), osteoporotic (0.37±0.14 kN), and normal (0.97±0.4 kN) cadaver vertebra. In the monolayer model, significant differences (p <0.05) were observed in pullout strength between extremely osteoporotic (0.3±0.02 kN), osteoporotic (0.65±0.12 kN), and normal (0.99±0.04 kN) bone model. However, the bilayer foam model exhibited no significant differences (p >0.05) in the pullout strength of pedicle screws between osteoporotic (0.85±0.08 kN) and extremely osteoporotic bone models (0.94±0.08 kN), but there was a significant difference (p <0.05) between osteoporotic (0.94±0.08 kN) and normal bone models (1.19±0.05 kN). There were no significant differences (p >0.05) in pullout strength between cadaver and bilayer foam model in normal bones. CONCLUSIONS: The new synthetic bone model that reflects the contribution of the pedicles to the pullout strength of the pedicle screws could provide a more efficacious means of testing pedicle-screw pullout strength. The bilayer model can match the pullout strength value of normal lumbar vertebra bone whereas the monolayer foam model was able to match that of the extremely osteoporotic lumbar vertebra.

7.
Proc Inst Mech Eng H ; 231(2): 149-159, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28056711

RESUMEN

This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.


Asunto(s)
Prótesis de Cadera , Diseño de Prótesis , Adulto , Artroplastia de Reemplazo de Cadera/métodos , Fenómenos Biomecánicos , Módulo de Elasticidad , Análisis de Elementos Finitos , Humanos , Masculino , Modelación Específica para el Paciente , Estrés Mecánico , Soporte de Peso
8.
Med Eng Phys ; 40: 28-38, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27939099

RESUMEN

Pedicle screws are widely used for the treatment of spinal instability by spine fusion. Screw loosening is a major problem of spine fusion, contributing to delayed patient recovery. The present study aimed to understand the factor and interaction effects of density, insertion depth and insertion angle on pedicle screw pull out strength and insertion torque. A pull out study was carried out on rigid polyurethane foam blocks representing osteoporotic to normal bone densities according to the ASTM-1839 standard. It was found that density contributes most to pullout strength and insertion torque. The interaction effect is significant (p < 0.05) and contributes 8% to pull out strength. Axial pullout strength was 34% lower than angled pull out strength in the osteoporotic bone model. Insertion angle had no significant effect (p > 0.05) on insertion torque. Pullout strength and insertion torque had no significant correlation (p > 0.05) in the case of the extremely osteoporotic bone model.


Asunto(s)
Hueso Esponjoso , Fenómenos Mecánicos , Modelos Biológicos , Osteoporosis , Tornillos Pediculares , Estrés Mecánico , Torque
9.
Comput Methods Programs Biomed ; 137: 11-22, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28110717

RESUMEN

BACKGROUND AND OBJECTIVE: Pedicle screw instrumentation is widely used in the treatment of spinal disorders and deformities. Currently, the surgeon decides the holding power of instrumentation based on the perioperative feeling which is subjective in nature. The objective of the paper is to develop a surrogate model which will predict the pullout strength of pedicle screw based on density, insertion angle, insertion depth and reinsertion. METHODS: A Taguchi's orthogonal array was used to design an experiment to find the factors effecting pullout strength of pedicle screw. The pullout studies were carried using polyaxial pedicle screw on rigid polyurethane foam block according to American society for testing of materials (ASTM F543). Analysis of variance (ANOVA) and Tukey's honestly significant difference multiple comparison tests were done to find factor effect. Based on the experimental results, surrogate models based on Krigging, polynomial response surface and radial basis function were developed for predicting the pullout strength for different combination of factors. An ensemble of these surrogates based on weighted average surrogate model was also evaluated for prediction. RESULTS: Density, insertion depth, insertion angle and reinsertion have a significant effect (p <0.05) on pullout strength of pedicle screw. Weighted average surrogate performed the best in predicting the pull out strength amongst the surrogate models considered in this study and acted as insurance against bad prediction. CONCLUSIONS: A predictive model for pullout strength of pedicle screw was developed using experimental values and surrogate models. This can be used in pre-surgical planning and decision support system for spine surgeon.


Asunto(s)
Tornillos Pediculares , Enfermedades de la Columna Vertebral/cirugía , Humanos , Ensayo de Materiales , Poliuretanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...