Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 199: 101953, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33188884

RESUMEN

Protective effects of the telomerase protein TERT have been shown in neurons and brain. We previously demonstrated that TERT protein can accumulate in mitochondria of Alzheimer's disease (AD) brains and protect from pathological tau in primary mouse neurons. This prompted us to employ telomerase activators in order to boost telomerase expression in a mouse model of Parkinson's disease (PD) overexpressing human wild type α-synuclein. Our aim was to test whether increased Tert expression levels were able to ameliorate PD symptoms and to activate protein degradation. We found increased Tert expression in brain for both activators which correlated with a substantial improvement of motor functions such as gait and motor coordination while telomere length in the analysed region was not changed. Interestingly, only one activator (TA-65) resulted in a decrease of reactive oxygen species from brain mitochondria. Importantly, we demonstrate that total, phosphorylated and aggregated α-synuclein were significantly decreased in the hippocampus and neocortex of activator-treated mice corresponding to enhanced markers of autophagy suggesting an improved degradation of toxic alpha-synuclein. We conclude that increased Tert expression caused by telomerase activators is associated with decreased α-synuclein protein levels either by activating autophagy or by preventing or delaying impairment of degradation mechanisms during disease progression. This encouraging preclinical data could be translated into novel therapeutic options for neurodegenerative disorders such as PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína/metabolismo , Animales , Autofagia , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/genética , Telomerasa/genética , alfa-Sinucleína/genética
2.
PLoS One ; 8(1): e52989, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326372

RESUMEN

Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein, TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells.


Asunto(s)
Apoptosis , Daño del ADN , Mitocondrias/metabolismo , Telomerasa/metabolismo , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Immunoblotting , Células MCF-7 , Microscopía Confocal , Mitocondrias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Oxidantes/farmacología , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Telomerasa/genética , Transfección
3.
Free Radic Biol Med ; 52(6): 1024-32, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22240154

RESUMEN

Fibrotic remodelling of lung parenchymal and airway compartments is the major contributor to life-threatening organ dysfunction in chronic lung diseases such as idiopathic pulmonary fibrosis (IPF) and Chronic Obstructive Pulmonary Disease (COPD). Since transforming growth factor-ß1 (TGF-ß1) is believed to play a key role in disease pathogenesis and markers of oxidative stress are also commonly detected in bronchoalveolar lavage (BAL) from such patients we sought to investigate whether both factors might be interrelated. Here we investigated the hypothesis that oxidative stress to the lung epithelium promotes fibrotic repair by driving epithelial-to-mesenchymal transition (EMT) via the augmentation of TGF-ß1. We show that in response to 400µM hydrogen peroxide (H(2)O(2)) A549 cells, used a model for alveolar epithelium, and human primary bronchial epithelial cells (PBECs) undergo EMT displaying morphology changes, decreased expression of epithelial markers (E-cadherin and ZO-1), increased expression of mesenchymal markers (vimentin and α-smooth muscle actin) as well as increased secretion of extracelluar matrix components. The same oxidative stress also promotes expression of TGF-ß1. Inhibition of TGF-ß1 signalling as well as treatment with antioxidants such as phenyl tert-butylnitrone (PBN) and superoxide dismutase 3 (SOD3) prevent the oxidative stress driven EMT-like changes described above. Interventions also inhibited EMT-like changes. This study identifies a link between oxidative stress, TGF-ß1 and EMT in lung epithelium and highlights the potential for antioxidant therapies to limit EMT and its potential contribution to chronic lung disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibrosis Pulmonar Idiopática/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Antioxidantes/farmacología , Biomarcadores/metabolismo , Línea Celular , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Radicales Libres/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/farmacología , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...