Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 14(1): 13603, 2024 06 13.
Article En | MEDLINE | ID: mdl-38866944

Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.


Cell Movement , Cell Proliferation , Endothelial Cells , Netrin Receptors , Receptors, Notch , Retina , Signal Transduction , Animals , Netrin Receptors/metabolism , Receptors, Notch/metabolism , Mice , Endothelial Cells/metabolism , Retina/metabolism , Humans , Retinal Vessels/metabolism , Neovascularization, Physiologic
2.
Angiogenesis ; 26(2): 249-263, 2023 05.
Article En | MEDLINE | ID: mdl-36376768

The Notch signaling pathway is an important therapeutic target for the treatment of inflammatory diseases and cancer. We previously created ligand-specific inhibitors of Notch signaling comprised of Fc fusions to specific EGF-like repeats of the Notch1 extracellular domain, called Notch decoys, which bound ligands, blocked Notch signaling, and showed anti-tumor activity with low toxicity. However, the study of their function depended on virally mediated expression, which precluded dosage control and limited clinical applicability. We have refined the decoy design to create peptibody-based Notch inhibitors comprising the core binding domains, EGF-like repeats 10-14, of either Notch1 or Notch4. These Notch peptibodies showed high secretion properties and production yields that were improved by nearly 100-fold compared to previous Notch decoys. Using surface plasmon resonance spectroscopy coupled with co-immunoprecipitation assays, we observed that Notch1 and Notch4 peptibodies demonstrate strong but distinct binding properties to Notch ligands DLL4 and JAG1. Both Notch1 and Notch4 peptibodies interfere with Notch signaling in endothelial cells and reduce expression of canonical Notch targets after treatment. While prior DLL4 inhibitors cause hyper-sprouting, the Notch1 peptibody reduced angiogenesis in a 3-dimensional in vitro sprouting assay. Administration of Notch1 peptibodies to neonate mice resulted in reduced radial outgrowth of retinal vasculature, confirming anti-angiogenic properties. We conclude that purified Notch peptibodies comprising EGF-like repeats 10-14 bind to both DLL4 and JAG1 ligands and exhibit anti-angiogenic properties. Based on their secretion profile, unique Notch inhibitory activities, and anti-angiogenic properties, Notch peptibodies present new opportunities for therapeutic Notch inhibition.


Angiogenesis Inhibitors , Endothelial Cells , Receptor, Notch1 , Receptor, Notch4 , Animals , Mice , Angiogenesis Inhibitors/genetics , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Epidermal Growth Factor/metabolism , Immunoprecipitation , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Ligands , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptor, Notch4/genetics , Receptor, Notch4/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Retinal Vessels/drug effects , Surface Plasmon Resonance
4.
Clin Cancer Res ; 26(18): 4970-4982, 2020 09 15.
Article En | MEDLINE | ID: mdl-32586940

PURPOSE: Clear cell renal cell carcinoma (ccRCC) is frequently associated with inactivation of the von Hippel-Lindau tumor suppressor, resulting in activation of HIF-1α and HIF-2α. The current paradigm, established using mechanistic cell-based studies, supports a tumor promoting role for HIF-2α, and a tumor suppressor role for HIF-1α. However, few studies have comprehensively examined the clinical relevance of this paradigm. Furthermore, the hypoxia-associated factor (HAF), which regulates the HIFs, has not been comprehensively evaluated in ccRCC. EXPERIMENTAL DESIGN: To assess the involvement of HAF/HIFs in ccRCC, we analyzed their relationship to tumor grade/stage/outcome using tissue from 380 patients, and validated these associations using tissue from 72 additional patients and a further 57 patients treated with antiangiogenic therapy for associations with response. Further characterization was performed using single-cell mRNA sequencing (scRNA-seq), RNA-in situ hybridization (RNA-ISH), and IHC. RESULTS: HIF-1α was primarily expressed in tumor-associated macrophages (TAMs), whereas HIF-2α and HAF were expressed primarily in tumor cells. TAM-associated HIF-1α was significantly associated with high tumor grade and increased metastasis and was independently associated with decreased overall survival. Furthermore, elevated TAM HIF-1α was significantly associated with resistance to antiangiogenic therapy. In contrast, high HAF or HIF-2α were associated with low grade, decreased metastasis, and increased overall survival. scRNA-seq, RNA-ISH, and Western blotting confirmed the expression of HIF-1α in M2-polarized CD163-expressing TAMs. CONCLUSIONS: These findings highlight a potential role of TAM HIF-1α in ccRCC progression and support the reevaluation of HIF-1α as a therapeutic target and marker of disease progression.


Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/mortality , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Neoplasms/mortality , Tumor-Associated Macrophages/metabolism , Adult , Aged , Aged, 80 and over , Basic Helix-Loop-Helix Transcription Factors/analysis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers, Tumor/analysis , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Cell Line, Tumor , Chemotherapy, Adjuvant , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/analysis , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Nephrectomy , Prognosis , RNA-Seq , Retrospective Studies , Single-Cell Analysis , Survival Analysis , Tumor-Associated Macrophages/immunology
5.
Mol Cancer Res ; 17(5): 1220-1232, 2019 05.
Article En | MEDLINE | ID: mdl-30705246

Low oxygen or hypoxia is a feature of all solid tumors and has been associated with aggressive disease. Here, we describe a novel mechanism for the hypoxia-dependent degradation of the Ras-GTPase-activating protein neurofibromin, by hypoxia-associated factor (HAF). We have previously characterized HAF as an oxygen-independent ubiquitin ligase for HIF-1α. Here, we show that HAF promotes neurofibromin ubiquitination and degradation independently of oxygen and pVHL, resulting in Ras-ERK pathway activation. Hypoxia enhanced HAF:neurofibromin binding independently of HAF-SUMOylation, whereas HAF knockdown increased neurofibromin levels primarily in hypoxia, supporting the role of HAF as a hypoxia-specific neurofibromin regulator. HAF overexpression increased p-ERK levels and promoted resistance of clear cell kidney cancer (ccRCC) cells to sorafenib and sunitinib in both normoxia and hypoxia. However, a greater-fold increase in sorafenib/sunitinib resistance was observed during hypoxia, particularly in pVHL-deficient cells. Intriguingly, HAF-mediated resistance was HIF-2α-dependent in normoxia, but HIF-2α-independent in hypoxia indicating two potential mechanisms of HAF-mediated resistance: a HIF-2α-dependent pathway dominant in normoxia, and the direct activation of the Ras-ERK pathway through neurofibromin degradation dominant in hypoxia. Patients with ccRCC with high HAF transcript or protein levels showed significantly decreased overall survival compared with those with low HAF. Thus, we establish a novel, nonmutational pathway of neurofibromin inactivation through hypoxia-induced HAF-mediated degradation, leading to Ras-ERK activation and poor prognosis in ccRCC. IMPLICATIONS: We describe a novel mechanism of neurofibromin degradation induced by hypoxia that leads to activation of the prooncogenic Ras-ERK pathway and resistance to therapy.


Carcinoma, Renal Cell/metabolism , Drug Resistance, Neoplasm , Intracellular Signaling Peptides and Proteins/metabolism , Kidney Neoplasms/metabolism , Neurofibromin 1/chemistry , Neurofibromin 1/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Signaling System , Proteolysis , Ribonucleoproteins, Small Nuclear , Sorafenib , Sunitinib , Tumor Hypoxia , Ubiquitination , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , ras Proteins/metabolism
6.
Hepatology ; 63(5): 1576-91, 2016 May.
Article En | MEDLINE | ID: mdl-26799785

UNLABELLED: The hypoxia-inducible factor (HIF), HIF-1, is a central regulator of the response to low oxygen or inflammatory stress and plays an essential role in survival and function of immune cells. However, the mechanisms regulating nonhypoxic induction of HIF-1 remain unclear. Here, we assess the impact of germline heterozygosity of a novel, oxygen-independent ubiquitin ligase for HIF-1α: hypoxia-associated factor (HAF; encoded by SART1). SART1(-/-) mice were embryonic lethal, whereas male SART1(+/-) mice spontaneously recapitulated key features of nonalcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC), including steatosis, fibrosis, and inflammatory cytokine production. Male, but not female, SART1(+/-) mice showed significant up-regulation of HIF-1α in circulating and liver-infiltrating immune cells, but not in hepatocytes, before development of malignancy. Additionally, Kupffer cells derived from male, but not female, SART1(+/-) mice produced increased levels of the HIF-1-dependent chemokine, regulated on activation, normal T-cell expressed and secreted (RANTES), compared to wild type. This was associated with increased liver-neutrophilic infiltration, whereas infiltration of lymphocytes and macrophages were not significantly different. Neutralization of circulating RANTES decreased liver neutrophilic infiltration and attenuated HCC tumor initiation/growth in SART1(+/-) mice. CONCLUSION: This work establishes a new tumor-suppressor role for HAF in immune cell function by preventing inappropriate HIF-1 activation in male mice and identifies RANTES as a novel therapeutic target for NASH and NASH-driven HCC.


Carcinoma, Hepatocellular/etiology , Chemokine CCL5/physiology , Haploinsufficiency , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Liver Neoplasms/etiology , Trans-Activators/genetics , Animals , Fatty Acids/metabolism , Fatty Liver/etiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Ribonucleoproteins, Small Nuclear
...