Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 33, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167253

RESUMEN

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.


Asunto(s)
Aspergilosis , Gliotoxina , Humanos , Aspergillus fumigatus/metabolismo , Gliotoxina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Aspergilosis/microbiología
2.
Front Cell Infect Microbiol ; 13: 1268959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868350

RESUMEN

Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1ß, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.


Asunto(s)
Paracoccidioides , Paracoccidioidomicosis , Animales , Ratones , Paracoccidioides/genética , Proteómica , Ratones Endogámicos C57BL , Hierro/metabolismo , Inmunidad , Granuloma
3.
Fungal Genet Biol ; 169: 103836, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37666447

RESUMEN

The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Humanos , Cromatina/metabolismo , Metabolismo Secundario/genética , Virulencia , Proteínas Fúngicas/metabolismo , Aflatoxinas/genética , Regulación Fúngica de la Expresión Génica
4.
Essays Biochem ; 67(5): 877-892, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37681641

RESUMEN

Fungi are a diverse group of organisms that can be both beneficial and harmful to mankind. They have advantages such as producing food processing enzymes and antibiotics, but they can also be pathogens and produce mycotoxins that contaminate food. Over the past two decades, there have been significant advancements in methods for studying fungal molecular biology. These advancements have led to important discoveries in fungal development, physiology, pathogenicity, biotechnology, and natural product research. Protein complexes and protein-protein interactions (PPIs) play crucial roles in fungal biology. Various methods, including yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC), are used to investigate PPIs. However, affinity-based PPI methods like co-immunoprecipitation (Co-IP) are highly preferred because they represent the natural conditions of PPIs. In recent years, the integration of liquid chromatography coupled with mass spectrometry (LC-MS/MS) has been used to analyse Co-IPs, leading to the discovery of important protein complexes in filamentous fungi. In this review, we discuss the tandem affinity purification (TAP) method and single affinity purification methods such as GFP, HA, FLAG, and MYC tag purifications. These techniques are used to identify PPIs and protein complexes in filamentous fungi. Additionally, we compare the efficiency, time requirements, and material usage of Sepharose™ and magnetic-based purification systems. Overall, the advancements in fungal molecular biology techniques have provided valuable insights into the complex interactions and functions of proteins in fungi. The methods discussed in this review offer powerful tools for studying fungal biology and will contribute to further discoveries in this field.


Asunto(s)
Hongos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Biotecnología , Biología Molecular
5.
Res Sq ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37398048

RESUMEN

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. Peroxisomes are also required for proper GT production and self-defense. The Mitogen-Activated Protein (MAP) kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. Our work emphasizes the importance of dynamic compartmentalization of cellular events for GT production and self-defense.

6.
Fungal Genet Biol ; 166: 103795, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023941

RESUMEN

Gliotoxin (GT) biosynthesis in fungi is encoded by the gli biosynthetic gene cluster. While GT addition autoinduces biosynthesis, Zn2+ has been shown to attenuate cluster activity, and it was speculated that identification of Zn2Cys6 binuclear transcription factor GliZ binding partners might provide insight into this observation. Using the Tet-ON induction system, doxycycline (DOX) presence induced GliZ fusion protein expression in, and recovery of GT biosynthesis by, A. fumigatus ΔgliZ::HA-gliZ and ΔgliZ::TAP-gliZ strains, respectively. Quantitative RT-PCR confirmed that DOX induces gli cluster gene expression (n = 5) in both A. fumigatus HA-GliZ and TAP-GliZ strains. GT biosynthesis was evident in Czapek-Dox and in Sabouraud media, however tagged GliZ protein expression was more readily detected in Sabouraud media. Unexpectedly, Zn2+ was essential for GliZ fusion protein expression in vivo, following 3 h DOX induction. Moreover, HA-GliZ abundance was significantly higher in either DOX/GT or DOX/Zn2+, compared to DOX-only. This suggests that while GT induction is still intact, Zn2+ inhibition of HA-GliZ production in vivo is lost. Co-immunoprecipitation revealed that GT oxidoreductase GliT associates with GliZ in the presence of GT, suggesting a potential protective role. Additional putative HA-GliZ interacting proteins included cystathionine gamma lyase, ribosomal protein L15 and serine hydroxymethyltransferase (SHMT). Total mycelial quantitative proteomic data revealed that GliT and GtmA, as well as several other gli cluster proteins, are increased in abundance or uniquely expressed with GT addition. Proteins involved in sulphur metabolism are also differentially expressed with GT or Zn2+ presence. Overall, we disclose that under DOX induction GliZ functionality is unexpectedly evident in zinc-replete media, subject to GT induction and that GliT appears to associate with GliZ, potentially to prevent dithiol gliotoxin (DTG)-mediated GliZ inactivation by zinc ejection.


Asunto(s)
Aspergillus fumigatus , Gliotoxina , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteómica , Zinc/metabolismo
7.
PLoS Genet ; 18(12): e1010502, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508464

RESUMEN

Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.


Asunto(s)
Aspergillus nidulans , Proteínas F-Box , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Metiltransferasas/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo
8.
Nucleic Acids Res ; 50(17): 9797-9813, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36095118

RESUMEN

Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.


Asunto(s)
Aspergillus nidulans , Cromatina , Acetiltransferasas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genes Reguladores , Histona Desacetilasas/metabolismo , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Esterigmatocistina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
PLoS Genet ; 15(3): e1008053, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30883543

RESUMEN

Eukaryotic striatin forms striatin-interacting phosphatase and kinase (STRIPAK) complexes that control many cellular processes including development, cellular transport, signal transduction, stem cell differentiation and cardiac functions. However, detailed knowledge of complex assembly and its roles in stress responses are currently poorly understood. Here, we discovered six striatin (StrA) interacting proteins (Sips), which form a heptameric complex in the filamentous fungus Aspergillus nidulans. The complex consists of the striatin scaffold StrA, the Mob3-type kinase coactivator SipA, the SIKE-like protein SipB, the STRIP1/2 homolog SipC, the SLMAP-related protein SipD and the catalytic and regulatory phosphatase 2A subunits SipE (PpgA), and SipF, respectively. Single and double deletions of the complex components result in loss of multicellular light-dependent fungal development, secondary metabolite production (e.g. mycotoxin Sterigmatocystin) and reduced stress responses. sipA (Mob3) deletion is epistatic to strA deletion by supressing all the defects caused by the lack of striatin. The STRIPAK complex, which is established during vegetative growth and maintained during the early hours of light and dark development, is mainly formed on the nuclear envelope in the presence of the scaffold StrA. The loss of the scaffold revealed three STRIPAK subcomplexes: (I) SipA only interacts with StrA, (II) SipB-SipD is found as a heterodimer, (III) SipC, SipE and SipF exist as a heterotrimeric complex. The STRIPAK complex is required for proper expression of the heterotrimeric VeA-VelB-LaeA complex which coordinates fungal development and secondary metabolism. Furthermore, the STRIPAK complex modulates two important MAPK pathways by promoting phosphorylation of MpkB and restricting nuclear shuttling of MpkC in the absence of stress conditions. SipB in A. nidulans is similar to human suppressor of IKK-ε(SIKE) protein which supresses antiviral responses in mammals, while velvet family proteins show strong similarity to mammalian proinflammatory NF-KB proteins. The presence of these proteins in A. nidulans further strengthens the hypothesis that mammals and fungi use similar proteins for their immune response and secondary metabolite production, respectively.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/crecimiento & desarrollo , Depuradores de Radicales Libres/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Genes Fúngicos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Luz , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Membrana Nuclear/metabolismo , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estrés Fisiológico
10.
Sci Rep ; 8(1): 16588, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30410052

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways are conserved signalling cascades in eukaryotes which regulate a myriad of processes in fungi from sexual reproduction to stress responses. These pathways rely on recruitment of three kinases on a scaffold protein to facilitate efficient kinase phosphorylation and subsequent downstream signalling to the nucleus. The model filamentous fungus Aspergillus nidulans utilises a MAPK pathway termed the pheromone module to regulate both development and secondary metabolism. This complex consists of the MAP3K (SteC), MAP2K (MkkB), MAPK (MpkB) and adaptor protein SteD. To date, there has been no scaffold protein identified for this MAPK pathway. In this study, we characterised a protein termed HamE, which we propose as a scaffold that regulates kinase phosphorylation and signalling in the pheromone module. Mass spectrometry analysis and BIFC experiments revealed that HamE physically interacts with both MkkB and MpkB and transiently interacts with SteC. Deletion of hamE or any of the pheromone module kinases results in reduced sporulation and complete abolishment of cleistothecia production. Mutants also exhibited reductions in expression of secondary metabolite gene clusters, including the velvet complex and sterigmatocystin genes. HamE acts as a positive regulator of MpkB phosphorylation, allowing for HamE to subsequently regulate development and secondary metabolism.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteómica/métodos , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Espectrometría de Masas , Mutación , Feromonas/metabolismo , Fosforilación , Metabolismo Secundario
11.
mBio ; 9(3)2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921666

RESUMEN

The attachment of one or more ubiquitin molecules by SCF (Skp-Cullin-F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organism Aspergillus nidulans in the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.


Asunto(s)
Aspergillus nidulans/genética , Represión Catabólica/genética , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Represoras/metabolismo , Aspergillus nidulans/metabolismo , Citoplasma/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Proteínas F-Box/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Glucosa/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Xilanos/metabolismo
12.
Curr Genet ; 64(1): 141-146, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28840304

RESUMEN

Aspergillus fumigatus is an opportunistic human pathogen that causes various complications in patients with a weakened immune system functions. Asexual spores of A. fumigatus are responsible for initiation of aspergillosis. Long-term viability and proper germination of dormant conidia depend on trehalose accumulation, which protect the spores against thermal and oxidative stress. A putative Myb transcription factor, MybA has been recently found to be responsible for a variety of physiological and molecular roles ranging from conidiation, spore viability, trehalose accumulation, cell wall integrity and protection against reactive oxygen species. In this perspective review, we discuss the recent findings of MybA and its overlapping functions with the other regulators of conidia viability and trehalose accumulation. Therefore, the aim of this perspective is to raise interesting and stimulating questions on the molecular functions of MybA in conidiation and trehalose biogenesis and to question its genetic and physical interactions with the other regulators of conidial viability.


Asunto(s)
Aspergillus fumigatus/fisiología , Viabilidad Microbiana/genética , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Factores de Transcripción/genética , Ambiente , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interacción Gen-Ambiente , Interacciones Huésped-Patógeno , Humanos , Factores de Transcripción/metabolismo
13.
Mol Microbiol ; 105(6): 880-900, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28677124

RESUMEN

Aspergillus fumigatus, a ubiquitous human fungal pathogen, produces asexual spores (conidia), which are the main mode of propagation, survival and infection of this human pathogen. In this study, we present the molecular characterization of a novel regulator of conidiogenesis and conidial survival called MybA because the predicted protein contains a Myb DNA binding motif. Cellular localization of the MybA::Gfp fusion and immunoprecipitation of the MybA::Gfp or MybA::3xHa protein showed that MybA is localized to the nucleus. RNA sequencing data and a uidA reporter assay indicated that the MybA protein functions upstream of wetA, vosA and velB, the key regulators involved in conidial maturation. The deletion of mybA resulted in a very significant reduction in the number and viability of conidia. As a consequence, the ΔmybA strain has a reduced virulence in an experimental murine model of aspergillosis. RNA-sequencing and biochemical studies of the ΔmybA strain suggested that MybA protein controls the expression of enzymes involved in trehalose biosynthesis as well as other cell wall and membrane-associated proteins and ROS scavenging enzymes. In summary, MybA protein is a new key regulator of conidiogenesis and conidial maturation and survival, and plays a crucial role in propagation and virulence of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/genética , Esporas Fúngicas/genética , Aspergilosis/microbiología , Aspergillus fumigatus/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/metabolismo , Eliminación de Secuencia , Factores de Transcripción/metabolismo , Virulencia/genética
14.
J Proteomics ; 131: 149-162, 2016 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-26498071

RESUMEN

Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus, which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p=0.0018) required for homocysteine generation from S-adenosylhomocysteine (SAH), and spermidine synthase (p=0.0068), involved in the recycling of Met, was observed. Analysis of Met-related metabolites revealed significant increases in the levels of Met and adenosine, in correlation with proteomic data. Methyltransferase MT-II is responsible for bisthiobis(methylthio)gliotoxin (BmGT) formation, deletion of MT-II abolished BmGT formation and led to increased GT sensitivity in A. niger. Proteomic analysis also revealed that GT exposure also significantly (p<0.05) increased hydrolytic enzyme abundance, including glycoside hydrolases (n=22) and peptidases (n=16). We reveal that in an attempt to protect against the detrimental affects of GT, methyltransferase-mediated GT thiomethylation alters cellular pathways involving Met and SAM, with consequential dysregulation of hydrolytic enzyme abundance in A. niger. Thus, it provides new opportunities to exploit the response of GT-naïve fungi to GT.


Asunto(s)
Aspergillus niger/metabolismo , Proteínas Fúngicas/metabolismo , Metionina/metabolismo , Metiltransferasas/metabolismo , Proteoma/metabolismo , Transducción de Señal/fisiología , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Gliotoxina , Hidrólisis
15.
Front Microbiol ; 6: 1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25653648

RESUMEN

Fungal secondary metabolism has become an important research topic with great biomedical and biotechnological value. In the postgenomic era, understanding the diversity and the molecular control of secondary metabolites (SMs) are two challenging tasks addressed by the research community. Discovery of the LaeA methyltransferase 10 years ago opened up a new horizon on the control of SM research when it was found that expression of many SM gene clusters is controlled by LaeA. While the molecular function of LaeA remains an enigma, discovery of the velvet family proteins as interaction partners further extended the role of the LaeA beyond secondary metabolism. The heterotrimeric VelB-VeA-LaeA complex plays important roles in development, sporulation, secondary metabolism, and pathogenicity. Recently, three other methyltransferases have been found to associate with the velvet complex, the LaeA-like methyltransferase F and the methyltransferase heterodimers VipC-VapB. Interaction of VeA with at least four methyltransferase proteins indicates a molecular hub function for VeA that questions: Is there a VeA supercomplex or is VeA part of a highly dynamic cellular control network with many different partners?

16.
Dev Cell ; 29(4): 406-20, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24871947

RESUMEN

Epigenetic and transcriptional control of gene expression must be coordinated in response to external signals to promote alternative multicellular developmental programs. The membrane-associated trimeric complex VapA-VipC-VapB controls a signal transduction pathway for fungal differentiation. The VipC-VapB methyltransferases are tethered to the membrane by the FYVE-like zinc finger protein VapA, allowing the nuclear VelB-VeA-LaeA complex to activate transcription for sexual development. Once the release from VapA is triggered, VipC-VapB is transported into the nucleus. VipC-VapB physically interacts with VeA and reduces its nuclear import and protein stability, thereby reducing the nuclear VelB-VeA-LaeA complex. Nuclear VapB methyltransferase diminishes the establishment of facultative heterochromatin by decreasing histone 3 lysine 9 trimethylation (H3K9me3). This favors activation of the regulatory genes brlA and abaA, which promote the asexual program. The VapA-VipC-VapB methyltransferase pathway combines control of nuclear import and stability of transcription factors with histone modification to foster appropriate differentiation responses.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Aspergillus nidulans/genética , Epigénesis Genética , Proteínas Fúngicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Metiltransferasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Activo de Núcleo Celular , Aspergillus nidulans/enzimología , Membrana Celular/enzimología , Núcleo Celular/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Heterocromatina/genética , Histonas/metabolismo , Metiltransferasas/genética , Datos de Secuencia Molecular , Transporte de Proteínas , Transducción de Señal , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas de Transporte Vesicular/genética
17.
Fungal Genet Biol ; 56: 42-53, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23644150

RESUMEN

Light induces various responses in fungi including formation of asexual and sexual reproductive structures. The formation of conidia in the filamentous fungus Aspergillus nidulans is regulated by red and blue light receptors. Expression of conidia associated con genes, which are widely spread in the fungal kingdom, increases upon exposure to light. We have characterized the light-inducible conF and conJ genes of A. nidulans which are homologs of con-6 and con-10 of Neurospora crassa. con genes are expressed during conidia formation in asexual development. Five minutes light exposure are sufficient to induce conF or conJ expression in vegetative mycelia. Similar to N. crassa there were no significant phenotypes of single con mutations. A double conF and conJ deletion resulted in significantly increased cellular amounts of glycerol or erythritol. This leads to a delayed germination phenotype combined with increased resistance against desiccation. These defects were rescued by complementation of the double mutant strain with either conF or conJ. This suggests that fungal con genes exhibit redundant functions in controlling conidia germination and adjusting cellular levels of substances which protect conidia against dryness.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Luz , Esporas Fúngicas/crecimiento & desarrollo , Estrés Fisiológico , Secuencia de Aminoácidos , Aspergillus nidulans/efectos de la radiación , Citosol/química , Eritritol/análisis , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Glicerol/análisis , Datos de Secuencia Molecular , Micelio/efectos de la radiación , Alineación de Secuencia
18.
PLoS Genet ; 6(12): e1001226, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21152013

RESUMEN

VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet) complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results in constitutive sexual differentiation, indicating that LaeA plays a pivotal role in inhibiting sexual development in response to light. Moreover, the absence of LaeA results in the formation of significantly smaller fruiting bodies. This is due to the lack of a specific globose cell type (Hülle cells), which nurse the young fruiting body during development. This suggests that LaeA controls Hülle cells. In summary, LaeA plays a dynamic role in fungal morphological and chemical development, and it controls expression, interactions, and modification of the velvet regulators.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Aspergillus nidulans/efectos de la radiación , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Luz , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...