Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; : e0068024, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158347

RESUMEN

Betacoronaviruses encode a conserved accessory gene within the +1 open reading frame (ORF) of nucleocapsid called the internal N gene. This gene is referred to as "I" for mouse hepatitis virus (MHV), ORF9b for severe acute respiratory CoV (SARS-CoV) and SARS-CoV-2, and ORF8b for Middle East respiratory syndrome CoV (MERS-CoV). Previous studies have shown ORF8b and ORF9b have immunoevasive properties, while the only known information for MHV I is its localization within the virion of the hepatotropic/neurotropic A59 strain of MHV. Whether MHV I is an innate immune antagonist or has other functions has not been evaluated. In this report, we show that the I protein of the neurotropic JHM strain of MHV (JHMV) lacks a N terminal domain present in other MHV strains, has immunoevasive properties, and is a component of the virion. Genetic deletion of JHMV I (rJHMVIΔ57-137) resulted in a highly attenuated virus both in vitro and in vivo that displayed a post RNA replication/transcription defect that ultimately resulted in fewer infectious virions packaged compared with wild-type virus. This phenotype was only seen for rJHMVIΔ57-137, suggesting the structural changes predicted for A59 I altered its function, as genetic deletion of A59 I did not change viral replication or pathogenicity. Together, these data show that JHMV I both acts as a mild innate immune antagonist and aids in viral assembly and infectious virus production, and suggest that the internal N proteins from different betacoronaviruses have both common and virus strain-specific properties.IMPORTANCECoV accessory genes are largely studied in overexpression assays and have been identified as innate immune antagonists. However, functions identified after overexpression are often not confirmed in the infected animal host. Furthermore, some accessory proteins are components of the CoV virion, but their role in viral replication and release remains unclear. Here, we utilized reverse genetics to abrogate expression of a conserved CoV accessory gene, the internal N ("I") gene, of the neurotropic JHMV strain of MHV and found that loss of the I gene resulted in a post replication defect that reduced virion assembly and ultimately infectious virus production, while also increasing some inflammatory molecule expression. Thus, the JHMV I protein has roles in virion assembly that were previously underappreciated and in immunoevasion.

2.
Immunol Rev ; 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162394

RESUMEN

Antibodies generated after vaccination or natural pathogen exposure are essential mediators of protection against many infections. Most studies with viruses have focused on antibody neutralization, in which protection is conferred by the fragment antigen binding region (Fab) through targeting of different steps in the viral lifecycle including attachment, internalization, fusion, and egress. Beyond neutralization, the fragment crystallizable (Fc) region of antibodies can integrate innate and adaptive immune responses by engaging complement components and distinct Fc gamma receptors (FcγR) on different host immune cells. In this review, we discuss recent advances in our understanding of antibody neutralization and Fc effector functions, and the assays used to measure them. Additionally, we describe the contexts in which these mechanisms are associated with protection against viruses and highlight how Fc-FcγR interactions can improve the potency of antibody-based therapies.

3.
Nat Commun ; 15(1): 246, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172096

RESUMEN

Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Virus de la Encefalitis Equina del Este , Caballos , Animales , Ratones , Alphavirus/genética , Virus de la Encefalitis Equina del Este/genética , Virus de los Bosques Semliki/genética , Lipoproteínas LDL
4.
J Infect Dis ; 229(4): 1059-1067, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37624979

RESUMEN

While the immunogenicity of SARS-CoV-2 vaccines has been well described in adults, pediatric populations have been less studied. In particular, children with type 1 diabetes are generally at elevated risk for more severe disease after infections, but are understudied in terms of COVID-19 and SARS-CoV-2 vaccine responses. We investigated the immunogenicity of COVID-19 mRNA vaccinations in 35 children with type 1 diabetes (T1D) and 23 controls and found that these children develop levels of SARS-CoV-2 neutralizing antibody titers and spike protein-specific T cells comparable to nondiabetic children. However, in comparing the neutralizing antibody responses in children who received 2 doses of mRNA vaccines (24 T1D; 14 controls) with those who received a third, booster dose (11 T1D; 9 controls), we found that the booster dose increased neutralizing antibody titers against ancestral SARS-CoV-2 strains but, unexpectedly, not Omicron lineage variants. In contrast, boosting enhanced Omicron variant neutralizing antibody titers in adults.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , Adulto , Humanos , Niño , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacunas de ARNm , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
mBio ; : e0247623, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882568

RESUMEN

Betacoronaviruses encode an internal (I) gene via an alternative reading frame within the nucleocapsid gene, called ORF8b for Middle-East respiratory syndrome coronavirus (MERS-CoV) and ORF9b for severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Previous reports suggested that proteins 8b and 9b are involved in evading multiple innate immune signaling pathways. However, their roles in mediating pathogenesis in infected animals have not been determined. In this study, we abrogated the expression of protein 8b in MERS-CoV and protein 9b in SARS-CoV-2. Using mouse models of MERS-CoV and SARS-CoV-2 infection, we found that MERS-CoV lacking protein 8b expression was more virulent, while SARS-CoV-2 lacking protein 9b expression was attenuated compared with the respective wild-type viruses. Upon further analysis, we detected increased levels of type I interferon and enhanced infiltration of immune cells to the lungs of mice infected with MERS-CoV lacking protein 8b expression. These data suggest that the I protein of MERS-CoV plays a role in limiting pathogenesis while that of SARS-CoV-2 enhances disease severity. IMPORTANCE The function of betacoronavirus internal protein has been relatively understudied. The earliest report on the internal protein of mouse hepatitis virus suggested that the internal protein is a structural protein without significant functions in virus replication and virulence. However, the internal proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle-East respiratory syndrome coronavirus, and SARS-CoV-2 have been shown to evade immune responses. Despite the reported functions of the internal protein in these highly pathogenic human coronaviruses, its role in mediating pathogenesis in experimentally infected animals has not been characterized. Our data indicated that despite the similar genomic location and expression strategy of these internal proteins, their effects on virulence are vastly different and virus specific, highlighting the complexity between host-virus interaction and disease outcome.

6.
Cell Rep ; 42(8): 112946, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37556325

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus responsible for epidemics of neurological disease across the Americas. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) is a recently reported entry receptor for VEEV. Here, using wild-type and Ldlrad3-deficient mice, we define a critical role for LDLRAD3 in controlling steps in VEEV infection, pathogenesis, and neurotropism. Our analysis shows that LDLRAD3 is required for efficient VEEV infection and pathogenesis prior to and after central nervous system invasion. Ldlrad3-deficient mice survive intranasal and intracranial VEEV inoculation and show reduced infection of neurons in different brain regions. As LDLRAD3 is a determinant of pathogenesis and an entry receptor required for VEEV infection of neurons of the brain, receptor-targeted therapies may hold promise as countermeasures.


Asunto(s)
Encefalomielitis Equina Venezolana , Receptores de LDL , Animales , Ratones , Encéfalo/patología , Sistema Nervioso Central , Virus de la Encefalitis Equina Venezolana/fisiología , Encefalomielitis Equina Venezolana/patología , Receptores de LDL/fisiología
7.
J Immunol ; 208(8): 1989-1997, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35365567

RESUMEN

Regulatory T cells (Tregs) are critical for regulating immunopathogenic responses in a variety of infections, including infection of mice with JHM strain of mouse hepatitis virus (JHMV), a neurotropic coronavirus that causes immune-mediated demyelinating disease. Although virus-specific Tregs are known to mitigate disease in this infection by suppressing pathogenic effector T cell responses of the same specificity, it is unclear whether these virus-specific Tregs form memory populations and persist similar to their conventional T cell counterparts of the same epitope specificity. Using congenically labeled JHMV-specific Tregs, we found that virus-specific Tregs persist long-term after murine infection, through at least 180 d postinfection and stably maintain Foxp3 expression. We additionally demonstrate that these cells are better able to proliferate and inhibit virus-specific T cell responses postinfection than naive Tregs of the same specificity, further suggesting that these cells differentiate into memory Tregs upon encountering cognate Ag. Taken together, these data suggest that virus-specific Tregs are able to persist long-term in the absence of viral Ag as memory Tregs.


Asunto(s)
Infecciones por Coronavirus , Virus de la Hepatitis Murina , Animales , Antígenos Virales/química , Antígenos Virales/inmunología , Ratones , Linfocitos T Reguladores
8.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099556

RESUMEN

Human Middle East respiratory syndrome (MERS) cases were detected primarily in the Middle East before a major outbreak occurred in South Korea in 2015. The Korean outbreak was initiated by a single infected individual, allowing studies of virus evolution in the absence of further MERS-CoV introduction into human populations. In contrast, MERS is primarily a camel disease on the Arabian Peninsula and in Africa, with clinical disease in humans only in the former location. Previous work identified two mutations in the South Korean MERS-CoV, D510G and I529T on the Spike (S) protein, that led to impaired binding to the receptor. However, whether these mutations affected virulence is unknown. To address this question, we constructed isogenic viruses expressing mutations found in the S protein from Korean isolates and showed that isogenic viruses carrying the Korean MERS-CoV mutations, D510G or I529T, were attenuated in mice, resulting in greater survival, less induction of inflammatory cytokines, and less severe lung injury. In contrast, isogenic viruses expressing S proteins from African isolates were nearly fully virulent; other studies showed that West African camel isolates carry mutations in MERS-CoV accessory proteins, which may limit human transmission. These data indicate that following a single-point introduction of the virus, MERS-CoV S protein evolved rapidly in South Korea to adapt to human populations, with consequences on virulence. In contrast, the mutations in S proteins of African isolates did not change virulence, indicating that S protein variation likely does not play a major role in the lack of camel-to-human transmission in Africa.


Asunto(s)
Variación Genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Femenino , Geografía , Humanos , Inmunización , Inflamación/patología , Masculino , Ratones Transgénicos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Mutación/genética , Temperatura , Virulencia , Internalización del Virus
9.
Nat Immunol ; 22(7): 801-802, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34103714
10.
Cell Host Microbe ; 29(7): 1052-1062, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34022154

RESUMEN

COVID-19 can result in severe disease characterized by significant immunopathology that is spurred by an exuberant, yet dysregulated, innate immune response with a poor adaptive response. A limited and delayed interferon I (IFN-I) and IFN-III response results in exacerbated proinflammatory cytokine production and in extensive cellular infiltrates in the respiratory tract, resulting in lung pathology. The development of effective therapeutics for patients with severe COVID-19 depends on our understanding of the pathological elements of this unbalanced innate immune response. Here, we review the mechanisms by which SARS-CoV-2 both activates and antagonizes the IFN and inflammatory response following infection, how a dysregulated cytokine and cellular response contributes to immune-mediated pathology in COVID-19, and therapeutic strategies that target elements of the innate response.


Asunto(s)
COVID-19/inmunología , Inmunidad Innata/inmunología , Interferones/uso terapéutico , SARS-CoV-2/inmunología , Animales , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Evasión Inmune , Interferón Tipo I/metabolismo , Interferones/metabolismo , Cinética , Interferón lambda , Tratamiento Farmacológico de COVID-19
11.
Transfusion ; 61(7): 2099-2106, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33829513

RESUMEN

BACKGROUND: With the recent approval of COVID-19 vaccines, recovered COVID-19 subjects who are vaccinated may be ideal candidates to donate COVID-19 convalescent plasma (CCP). CASE SERIES: Eleven recovered COVID-19 patients were screened to donate CCP. All had molecularly confirmed COVID-19, and all but one were antibody positive by chemiluminescence immunoassay (DiaSorin) prior to vaccination. All were tested again for antibodies 11-21 days after they were vaccinated (Pfizer/Moderna). All showed dramatic increases (~50-fold) in spike-specific antibody levels and had at least a 20-fold increase in the IC50 neutralizing antibody titer based on plaque reduction neutralization testing (PRNT). The spike-specific antibody levels following vaccination were significantly higher than those seen in any non-vaccinated COVID-19 subjects tested to date at our facility. CONCLUSION: Spike-specific and neutralizing antibodies demonstrated dramatic increases following a single vaccination after COVID-19 infection, which significantly exceeded values seen with COVID-19 infection alone. Recovered COVID-19 subjects who are vaccinated may make ideal candidates for CCP donation.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Donantes de Sangre , COVID-19/sangre , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Sueros Inmunes , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
12.
Proc Natl Acad Sci U S A ; 117(39): 24464-24474, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929007

RESUMEN

Microglia are considered both pathogenic and protective during recovery from demyelination, but their precise role remains ill defined. Here, using an inhibitor of colony stimulating factor 1 receptor (CSF1R), PLX5622, and mice infected with a neurotropic coronavirus (mouse hepatitis virus [MHV], strain JHMV), we show that depletion of microglia during the time of JHMV clearance resulted in impaired myelin repair and prolonged clinical disease without affecting the kinetics of virus clearance. Microglia were required only during the early stages of remyelination. Notably, large deposits of extracellular vesiculated myelin and cellular debris were detected in the spinal cords of PLX5622-treated and not control mice, which correlated with decreased numbers of oligodendrocytes in demyelinating lesions in drug-treated mice. Furthermore, gene expression analyses demonstrated differential expression of genes involved in myelin debris clearance, lipid and cholesterol recycling, and promotion of oligodendrocyte function. The results also demonstrate that microglial functions affected by depletion could not be compensated by infiltrating macrophages. Together, these results demonstrate that microglia play key roles in debris clearance and in the initiation of remyelination following infection with a neurotropic coronavirus but are not necessary during later stages of remyelination.


Asunto(s)
Infecciones por Coronavirus/patología , Enfermedades Desmielinizantes/patología , Microglía/patología , Remielinización , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/virología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Inmunidad Celular/efectos de los fármacos , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Virus de la Hepatitis Murina/efectos de los fármacos , Virus de la Hepatitis Murina/fisiología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Oligodendroglía/patología , Compuestos Orgánicos/administración & dosificación , Compuestos Orgánicos/efectos adversos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Remielinización/genética , Médula Espinal/inmunología , Médula Espinal/patología
13.
J Autoimmun ; 114: 102508, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32624353

RESUMEN

Priming of autoreactive T cells in lymph nodes by dendritic cells (DCs) is critical for the pathogenesis of experimental autoimmune encephalitis (EAE). DC activation reflects a balance of pro- and anti-inflammatory signals. One anti-inflammatory factor is prostaglandin D2 signaling through its cognate receptor, D-prostanoid receptor 1 (PTGDR), on myeloid cells. Loss of PTGDR signaling might be expected to enhance DC activation and EAE but here we show that PTGDR-/- mice developed only mild signs of MOG35-55 peptide immunization-induced EAE. Compared to wild type mice, PTGDR-/- mice exhibited less demyelination, decreased leukocyte infiltration and diminished microglia activation. These effects resulted from increased pro-inflammatory responses in the lymph nodes, most notably in IL-1ß production, with the unexpected consequence of increased activation-induced apoptosis of MOG35-55 peptide-specific T cells. Conditional deletion of PTGDR on DCs, and not other myeloid cells ameliorated EAE. Together, these results demonstrate the indispensable role that PGD2/PTGDR signaling on DCs has in development of pathogenic T cells in autoimmune demyelination.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Prostaglandina D2/metabolismo , Transducción de Señal , Traslado Adoptivo/métodos , Animales , Antígeno B7-H1/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/terapia , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
14.
Immunity ; 53(2): 248-263, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32717182

RESUMEN

A key goal to controlling coronavirus disease 2019 (COVID-19) is developing an effective vaccine. Development of a vaccine requires knowledge of what constitutes a protective immune response and also features that might be pathogenic. Protective and pathogenic aspects of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood, partly because the virus has infected humans for only 6 months. However, insight into coronavirus immunity can be informed by previous studies of immune responses to non-human coronaviruses, common cold coronaviruses, and SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we review the literature describing these responses and discuss their relevance to the SARS-CoV-2 immune response.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Neumonía Viral/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Inmunidad Adaptativa/inmunología , Animales , Betacoronavirus/patogenicidad , Linfocitos T CD8-positivos/inmunología , COVID-19 , Infecciones por Coronavirus/prevención & control , Humanos , Pandemias/prevención & control , Neumonía Viral/prevención & control , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/prevención & control , Vacunas Virales/inmunología
15.
PLoS Negl Trop Dis ; 13(5): e0007247, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31107882

RESUMEN

Cutaneous leishmaniasis (CL) is a parasitic disease causing chronic, ulcerating skin lesions. Most humans infected with the causative Leishmania protozoa are asymptomatic. Leishmania spp. are usually introduced by sand flies into the dermis of mammalian hosts in the presence of bacteria from either the host skin, sand fly gut or both. We hypothesized that bacteria at the dermal inoculation site of Leishmania major will influence the severity of infection that ensues. A C57BL/6 mouse ear model of single or coinfection with Leishmania major, Staphylococcus aureus, or both showed that single pathogen infections caused localized lesions that peaked after 2-3 days for S. aureus and 3 weeks for L. major infection, but that coinfection produced lesions that were two-fold larger than single infection throughout 4 weeks after coinfection. Coinfection increased S. aureus burdens over 7 days, whereas L. major burdens (3, 7, 28 days) were the same in singly and coinfected ears. Inflammatory lesions throughout the first 4 weeks of coinfection had more neutrophils than did singly infected lesions, and the recruited neutrophils from early (day 1) lesions had similar phagocytic and NADPH oxidase capacities. However, most neutrophils were apoptotic, and transcription of immunomodulatory genes that promote efferocytosis was not upregulated, suggesting that the increased numbers of neutrophils may, in part, reflect defective clearance and resolution of the inflammatory response. In addition, the presence of more IL-17A-producing γδ and non-γδ T cells in early lesions (1-7 days), and L. major antigen-responsive Th17 cells after 28 days of coinfection, with a corresponding increase in IL-1ß, may recruit more naïve neutrophils into the inflammatory site. Neutralization studies suggest that IL-17A contributed to an enhanced inflammatory response, whereas IL-1ß has an important role in controlling bacterial replication. Taken together, these data suggest that coinfection of L. major infection with S. aureus exacerbates disease, both by promoting more inflammation and neutrophil recruitment and by increasing neutrophil apoptosis and delaying resolution of the inflammatory response. These data illustrate the profound impact that coinfecting microorganisms can exert on inflammatory lesion pathology and host adaptive immune responses.


Asunto(s)
Coinfección/inmunología , Interleucina-17/inmunología , Leishmania major/fisiología , Leishmaniasis Cutánea/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/fisiología , Animales , Coinfección/microbiología , Coinfección/parasitología , Coinfección/patología , Femenino , Humanos , Interleucina-17/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Leishmania major/genética , Leishmania major/aislamiento & purificación , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Células Th17/inmunología
16.
J Clin Invest ; 128(3): 931-943, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29376888

RESUMEN

Recent findings have highlighted the role of microglia in orchestrating normal development and refining neural network connectivity in the healthy CNS. Microglia are not only vital cells in maintaining CNS homeostasis, but also respond to injury, infection, and disease by undergoing proliferation and changes in transcription and morphology. A better understanding of the specific role of microglia in responding to viral infection is complicated by the presence of nonmicroglial myeloid cells with potentially overlapping function in the healthy brain and by the rapid infiltration of hematopoietic myeloid cells into the brain in diseased states. Here, we used an inhibitor of colony-stimulating factor 1 receptor (CSF1R) that depletes microglia to examine the specific roles of microglia in response to infection with the mouse hepatitis virus (MHV), a neurotropic coronavirus. Our results show that microglia were required during the early days after infection to limit MHV replication and subsequent morbidity and lethality. Additionally, microglia depletion resulted in ineffective T cell responses. These results reveal nonredundant, critical roles for microglia in the early innate and virus-specific T cell responses and for subsequent host protection from viral encephalitis.


Asunto(s)
Infecciones por Coronavirus/inmunología , Encefalitis/inmunología , Microglía/inmunología , Inmunidad Adaptativa , Animales , Encéfalo/virología , Proliferación Celular , Perfilación de la Expresión Génica , Inmunidad Innata , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Virus de la Hepatitis Murina , Red Nerviosa , Bulbo Olfatorio/citología , Compuestos Orgánicos/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA