Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
mBio ; 15(3): e0338823, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38353545

Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.


Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Escherichia coli/genetics , Fluorides/metabolism , Lipopolysaccharides/metabolism , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Genomics , Nucleotides/metabolism , Lactates/metabolism , Uropathogenic Escherichia coli/genetics
2.
Comput Struct Biotechnol J ; 20: 4532-4541, 2022.
Article En | MEDLINE | ID: mdl-36090810

The binding of the type 1 fimbrial adhesin FimH to mannosylated receptors is allosterically regulated to enhance the fitness of uropathogenic Escherichia coli (UPEC) during urinary tract infection (UTI). Mutations in the two FimH domains (pilin and lectin) located outside the mannose binding pocket have been shown to influence mannose binding affinity, yet the details of the allostery mechanism are not fully elucidated. Here we characterised different FimH conformational states (termed low-affinity tense and high-affinity relaxed conformations) of natural FimH variants using molecular dynamics (MD) simulation techniques and report key structural dynamics differences between them. The clinically dominant FimH30 variant from the pandemic multidrug resistant E. coli ST131 lineage contains an R166H mutation that weakens FimH interdomain interactions and allows enhanced mannose interactions with pre-existing high-affinity relaxed conformations. When expressed in an isogenic ST131 strain background, FimH30 mediated high human cell adhesion and invasion, and enhanced biofilm formation over other variants. Collectively, our computational and experimental findings support a model of FimH protein allostery that is mediated by shifts in the pre-existing conformational equilibrium of FimH, additional to the sequential step-wise process of structural perturbations transmitted from one site to another within the protein. Importantly, it is the first study to shed light into how natural mutations in a clinically dominant FimH variant influence the protein's conformational landscape optimising its function for ST131 fitness at intestinal and extraintestinal niches.

3.
Stem Cell Reports ; 17(9): 2156-2166, 2022 09 13.
Article En | MEDLINE | ID: mdl-35985333

Human macrophages are a natural host of many mycobacterium species, including Mycobacterium abscessus (M. abscessus), an emerging pathogen affecting immunocompromised and cystic fibrosis patients with few available treatments. The search for an effective treatment is hindered by the lack of a tractable in vitro intracellular infection model. Here, we established a reliable model for M. abscessus infection using human pluripotent stem cell-derived macrophages (hPSC-macrophages). hPSC differentiation permitted reproducible generation of functional macrophages that were highly susceptible to M. abscessus infection. Electron microscopy demonstrated that M. abscessus was present in the hPSC-macrophage vacuoles. RNA sequencing analysis revealed a time-dependent host cell response, with differing gene and protein expression patterns post-infection. Engineered tdTOMATO-expressing hPSC-macrophages with GFP-expressing mycobacteria enabled rapid image-based high-throughput analysis of intracellular infection and quantitative assessment of antibiotic efficacy. Our study describes the first to our knowledge hPSC-based model for M. abscessus infection, representing a novel and accessible system for studying pathogen-host interaction and drug discovery.


Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium , Pluripotent Stem Cells , Humans , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/metabolism , Mycobacterium Infections, Nontuberculous/microbiology
4.
Article En | MEDLINE | ID: mdl-35871459

BACKGROUND: Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS: Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS: The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION: Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.


COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/diagnosis , Child , Humans , Immunoglobulin A
5.
JAMA Netw Open ; 5(3): e221313, 2022 03 01.
Article En | MEDLINE | ID: mdl-35262717

Importance: The immune response in children with SARS-CoV-2 infection is not well understood. Objective: To compare seroconversion in nonhospitalized children and adults with mild SARS-CoV-2 infection and identify factors that are associated with seroconversion. Design, Setting, and Participants: This household cohort study of SARS-CoV-2 infection collected weekly nasopharyngeal and throat swabs and blood samples during the acute (median, 7 days for children and 12 days for adults [IQR, 4-13] days) and convalescent (median, 41 [IQR, 31-49] days) periods after polymerase chain reaction (PCR) diagnosis for analysis. Participants were recruited at The Royal Children's Hospital, Melbourne, Australia, from May 10 to October 28, 2020. Participants included patients who had a SARS-CoV-2-positive nasopharyngeal or oropharyngeal swab specimen using PCR analysis. Main Outcomes and Measures: SARS-CoV-2 immunoglobulin G (IgG) and cellular (T cell and B cell) responses in children and adults. Seroconversion was defined by seropositivity in all 3 (an in-house enzyme-linked immunosorbent assay [ELISA] and 2 commercial assays: a SARS-CoV-2 S1/S2 IgG assay and a SARS-CoV-2 antibody ELISA) serological assays. Results: Among 108 participants with SARS-CoV-2-positive PCR findings, 57 were children (35 boys [61.4%]; median age, 4 [IQR, 2-10] years) and 51 were adults (28 women [54.9%]; median age, 37 [IQR, 34-45] years). Using the 3 established serological assays, a lower proportion of children had seroconversion to IgG compared with adults (20 of 54 [37.0%] vs 32 of 42 [76.2%]; P < .001). This result was not associated with viral load, which was similar in children and adults (mean [SD] cycle threshold [Ct] value, 28.58 [6.83] vs 24.14 [8.47]; P = .09). In addition, age and sex were not associated with seroconversion within children (median age, 4 [IQR, 2-14] years for both seropositive and seronegative groups; seroconversion by sex, 10 of 21 girls [47.6%] vs 10 of 33 boys [30.3%]) or adults (median ages, 37 years for seropositive and 40 years for seronegative adults [IQR, 34-39 years]; seroconversion by sex, 18 of 24 women [75.0%] vs 14 of 18 men [77.8%]) (P > .05 for all comparisons between seronegative and seropositive groups). Symptomatic adults had 3-fold higher SARS-CoV-2 IgG levels than asymptomatic adults (median, 227.5 [IQR, 133.7-521.6] vs 75.3 [IQR, 36.9-113.6] IU/mL), whereas no differences were observed in children regardless of symptoms. Moreover, differences in cellular immune responses were observed in adults compared with children with seroconversion. Conclusions and Relevance: The findings of this cohort study suggest that among patients with mild COVID-19, children may be less likely to have seroconversion than adults despite similar viral loads. This finding has implications for future protection after SARS-CoV-2 infection in children and for interpretation of serosurveys that involve children. Further research to understand why seroconversion and development of symptoms are potentially less likely in children after SARS-CoV-2 infection and to compare vaccine responses may be of clinical and scientific importance.


Antibodies, Viral/blood , COVID-19/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adult , Age Factors , COVID-19/epidemiology , COVID-19 Serological Testing , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Middle Aged , Seroconversion , Victoria/epidemiology , Viral Load
6.
Front Immunol ; 12: 741639, 2021.
Article En | MEDLINE | ID: mdl-34721408

Children have reduced severity of COVID-19 compared to adults and typically have mild or asymptomatic disease. The immunological mechanisms underlying these age-related differences in clinical outcomes remain unexplained. Here, we quantify 23 immune cell populations in 141 samples from children and adults with mild COVID-19 and their PCR-negative close household contacts at acute and convalescent time points. Children with COVID-19 displayed marked reductions in myeloid cells during infection, most prominent in children under the age of five. Recovery from infection in both children and adults was characterised by the generation of CD8 TCM and CD4 TCM up to 9 weeks post infection. SARS-CoV-2-exposed close contacts also had immunological changes over time despite no evidence of confirmed SARS-CoV-2 infection on PCR testing. This included an increase in low-density neutrophils during convalescence in both exposed children and adults, as well as increases in CD8 TCM and CD4 TCM in exposed adults. In comparison to children with other common respiratory viral infections, those with COVID-19 had a greater change in innate and T cell-mediated immune responses over time. These findings provide new mechanistic insights into the immune response during and after recovery from COVID-19 in both children and adults.


CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Convalescence , Environmental Exposure , Family Characteristics , Female , Humans , Immunity, Cellular , Immunologic Memory , Infant , Male , Middle Aged , Young Adult
7.
Scand J Immunol ; 94(1): e13040, 2021 Jul.
Article En | MEDLINE | ID: mdl-33759233

Cystic Fibrosis (CF) is primarily a progressive lung disease, characterized by chronic pulmonary infections with opportunistic pathogens. Such infections typically commence early in life, producing an inflammatory response marked by IL-8 chemokine production and neutrophilic infiltration, major contributory factors in CF progression. Studying this inflammation, especially early in life, is critical for developing new strategies for preventing or slowing disruption to the structural integrity of the CF airways. However, evaluating the immune responses of bronchoalveolar lavage (BAL) cells from children with CF faces technical challenges, including contamination carried from the lung due to pre-existing infections and low cell number availability. Here, we describe a technique for preparing BAL cells from young children with CF and using those cells in a bacterial stimulation assay. Initial antibiotic treatment proved essential for preventing resident bacteria from overgrowing BAL cell cultures, or non-specifically activating the cells. ACTB, identified as an optimal reference gene, was validated for accurate analysis of gene expression in these cells. Pseudomonas aeruginosa and Staphylococcus aureus were used as bacterial stimulants to evaluate the immune response of BAL cells from young children with CF. Addition of gentamicin prevented bacterial overgrowth, although if added after 3 hours of culture an extremely variable response resulted, with the bacteria causing a suppressive effect in some cultures. Addition of gentamicin after 1 hour of culture completely prevented this suppressive effect. This technique was then able to reproducibly measure the IL-8 response to stimulation with S. aureus and P. aeruginosa, including co-stimulation with both bacteria.


Bronchoalveolar Lavage Fluid/immunology , Cystic Fibrosis/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Bronchoalveolar Lavage/methods , Bronchoalveolar Lavage Fluid/microbiology , Child , Child, Preschool , Cystic Fibrosis/microbiology , Female , Humans , Infant , Inflammation/immunology , Inflammation/microbiology , Lung/immunology , Lung/microbiology , Male , Pseudomonas Infections/microbiology , Staphylococcal Infections/microbiology
8.
Nat Commun ; 11(1): 5703, 2020 11 11.
Article En | MEDLINE | ID: mdl-33177504

Compared to adults, children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have predominantly mild or asymptomatic infections, but the underlying immunological differences remain unclear. Here, we describe clinical features, virology, longitudinal cellular, and cytokine immune profile, SARS-CoV-2-specific serology and salivary antibody responses in a family of two parents with PCR-confirmed symptomatic SARS-CoV-2 infection and their three children, who tested repeatedly SARS-CoV-2 PCR negative. Cellular immune profiles and cytokine responses of all children are similar to their parents at all timepoints. All family members have salivary anti-SARS-CoV-2 antibodies detected, predominantly IgA, that coincide with symptom resolution in 3 of 4 symptomatic members. Plasma from both parents and one child have IgG antibody against the S1 protein and virus-neutralizing activity detected. Using a systems serology approach, we demonstrate higher levels of SARS-CoV-2-specific antibody features of these family members compared to healthy controls. These data indicate that children can mount an immune response to SARS-CoV-2 without virological confirmation of infection, raising the possibility that immunity in children can prevent the establishment of SARS-CoV-2 infection. Relying on routine virological and serological testing may not identify exposed children, with implications for epidemiological and clinical studies across the life-span.


Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/transmission , Cytokines/blood , Pneumonia, Viral/transmission , Saliva/immunology , Adult , Antibodies, Viral/immunology , Australia , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Child , Child, Preschool , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Monocytes/immunology , Pandemics , Parents , Pneumonia, Viral/immunology , SARS-CoV-2 , Serologic Tests , Spike Glycoprotein, Coronavirus/immunology
9.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G175-G188, 2020 08 01.
Article En | MEDLINE | ID: mdl-32538140

Gastrokines (GKNs) are anti-inflammatory proteins secreted by gastric epithelial (surface mucous and pit) cells, with their aberrant loss of expression causally linked to premalignant inflammation and gastric cancer (GC). Transcriptional mechanisms accounting for GKN expression loss have not been elucidated. Using human clinical cohorts, mouse transgenics, bioinformatics, and transfection/reporter assays, we report a novel mechanism of GKN gene transcriptional regulation and its impairment in GC. GKN1/GKN2 loss is highly coordinated, with both genes showing parallel downregulation during human and mouse GC development, suggesting joint transcriptional control. In BAC transgenic studies, we defined a 152-kb genomic region surrounding the human GKN1/GKN2 genes sufficient to direct their tissue- and lineage-restricted expression. A screen of the 152-kb region for candidate regulatory elements identified a DNase I hypersensitive site (CR2) located 4 kb upstream of the GKN1 gene. CR2 showed overlapping enrichment of enhancer-related histone marks (H3K27Ac), a consensus binding site (GRE) for the glucocorticoid receptor (GR), strong GR occupancy in ChIP-seq data sets and, critically, exhibited dexamethasone-sensitive enhancer activity in reporter assays. Strikingly, GR showed progressive expression loss, paralleling that of GKN1/2, in human and mouse GC, suggesting desensitized glucocorticoid signaling as a mechanism underlying GKN loss. Finally, mouse adrenalectomy studies revealed a critical role for endogenous glucocorticoids in sustaining correct expression (and anti-inflammatory restraint) of GKNs in vivo. Together, these data link the coordinate expression of GKNs to a glucocorticoid-responsive and likely shared transcriptional enhancer mechanism, with its compromised activation contributing to dual GKN loss during GC progression.NEW & NOTEWORTHY Gastrokine 2 (GKN2) is an anti-inflammatory protein produced by the gastric epithelium. GKN2 expression is progressively lost during gastric cancer (GC), which is believed to play a casual role in GC development. Here, we use bacterial artificial chromosome transgenic studies to identify a glucocorticoid-responsive enhancer element that likely governs expression of GKN1/GKN2, which, via parallel expression loss of the anti-inflammatory glucocorticoid receptor, reveals a novel mechanism to explain the loss of GKN2 during GC pathogenesis.


Carrier Proteins/metabolism , Glucocorticoids/pharmacology , Peptide Hormones/metabolism , Stomach Neoplasms/metabolism , A549 Cells , Animals , Carrier Proteins/genetics , Chromosomes, Artificial, Bacterial , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Transgenic , Multigene Family , Peptide Hormones/genetics
10.
Helicobacter ; 25(2): e12681, 2020 Apr.
Article En | MEDLINE | ID: mdl-32088936

BACKGROUND: Helicobacter pylori occupy a unique niche, located within the mucus layer lining the stomach, and attached to the apical surface of the gastric epithelium. As such, antibodies would be expected to play a major role in regulating infection and/or pathogenesis. However, experiments using antibody-deficient mice to study gastric helicobacter infection have yielded inconsistent results, although some pointed toward antibodies increasing colonization levels and decreasing gastritis severity. The variability in these studies is possibly due to their use of nonmatched wild-type controls. This current study presents the first evaluation of the role of antibodies in H pylori infection by comparing antibody-deficient mice with matched wild-type siblings. METHODS: Matched wild-type and antibody-deficient µMT mice were generated by heterozygous crossings. In two separate experiments, appropriately genotyped sibling littermates were infected with H pylori for 4 months and then sera and stomachs were collected. RESULTS: There was no difference in H pylori colonization levels between infected µMT mice and sibling wild-type controls. Similarly, there was no significant difference in the severity of gastritis between these groups of mice, although there was a trend toward less severe gastritis in µMT mice which was supported by a significantly lower IFNγ (Th1) gastric cytokine response. CONCLUSIONS: Comparing matched antibody-deficient and antibody-competent mice indicates that an antibody response does not influence H pylori colonization levels. Contrary to previous studies, these results suggest antibodies might have a minor pro-inflammatory effect by promoting gastric Th1 cytokines, although this did not translate to a significant effect on gastritis severity.


Antibodies/immunology , Helicobacter Infections/immunology , Helicobacter pylori , Animals , Cytokines/metabolism , Gastric Mucosa/microbiology , Gastritis/microbiology , Gastritis/pathology , Helicobacter Infections/pathology , Helicobacter pylori/growth & development , Helicobacter pylori/pathogenicity , Immunity, Mucosal , Mice , Mice, Inbred C57BL , Stomach/microbiology , Stomach/pathology
11.
Hum Immunol ; 80(10): 878-882, 2019 Oct.
Article En | MEDLINE | ID: mdl-31213370

Mucin 1 is a cell-membrane associated mucin, expressed on epithelial and immune cells that helps protect against pathogenic infections. In humans, MUC1 is highly polymorphic, predominantly due to the presence of a variable number tandem repeat (VNTR) region in the extracellular domain that results in MUC1 molecules of typically either short or long length. A genetic link is known between these MUC1 polymorphisms and inflammation-driven diseases, although the mechanism is not fully understood. We previously showed that MUC1 on murine macrophages specifically restricts activation of the NLRP3 inflammasome, thereby repressing inflammation. This study evaluated the effect of MUC1 VNTR polymorphisms on activity of the NLRP3 inflammasome in human macrophages, finding that long MUC1 alleles correlated with increased IL-1ß production following NLRP3 inflammasome activation. This indicates that the length of MUC1 can influence IL-1ß production, thus providing the first evidence of an immune-modulatory role of MUC1 VNTR polymorphisms in human macrophages.


Inflammasomes/immunology , Macrophages/immunology , Mucin-1/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polymorphism, Genetic/immunology , Adolescent , Alleles , Child , Gene Frequency/genetics , Genotype , Healthy Volunteers , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Male , Minisatellite Repeats/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nigericin/pharmacology , Signal Transduction/drug effects
12.
FASEB J ; 33(2): 2095-2104, 2019 02.
Article En | MEDLINE | ID: mdl-30260702

Bacterial infection is one of the leading causes of death in young, elderly, and immune-compromised patients. The rapid spread of multi-drug-resistant (MDR) bacteria is a global health emergency and there is a lack of new drugs to control MDR pathogens. We describe a heretofore-unexplored discovery pathway for novel antibiotics that is based on self-targeting, structure-disrupting peptides. We show that a helical peptide, KFF- EcH3, derived from the Escherichia coli methionine aminopeptidase can disrupt secondary and tertiary structure of this essential enzyme, thereby killing the bacterium (including MDR strains). Significantly, no detectable resistance developed against this peptide. Based on a computational analysis, our study predicted that peptide KFF- EcH3 has the strongest interaction with the structural core of the methionine aminopeptidase. We further used our approach to identify peptide KFF- NgH1 to target the same enzyme from Neisseria gonorrhoeae. This peptide inhibited bacterial growth and was able to treat a gonococcal infection in a human cervical epithelial cell model. These findings present an exciting new paradigm in antibiotic discovery using self-derived peptides that can be developed to target the structures of any essential bacterial proteins.-Zhan, J., Jia, H., Semchenko, E. A., Bian, Y., Zhou, A. M., Li, Z., Yang, Y., Wang, J., Sarkar, S., Totsika, M., Blanchard, H., Jen, F. E.-C., Ye, Q., Haselhorst, T., Jennings, M. P., Seib, K. L., Zhou, Y. Self-derived structure-disrupting peptides targeting methionine aminopeptidase in pathogenic bacteria: a new strategy to generate antimicrobial peptides.


Aminopeptidases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cell Proliferation/drug effects , Gonorrhea/drug therapy , Methionine/metabolism , Neisseria gonorrhoeae/drug effects , Cells, Cultured , Cervix Uteri/drug effects , Cervix Uteri/metabolism , Cervix Uteri/microbiology , Drug Resistance, Multiple, Bacterial , Female , Gonorrhea/microbiology , Humans , Microbial Sensitivity Tests , Neisseria gonorrhoeae/enzymology
13.
J Infect Dis ; 218(6): 979-990, 2018 08 14.
Article En | MEDLINE | ID: mdl-29471349

Background: Epidemiological studies point to the gut as a key reservoir of multidrug resistant Escherichia coli multilocus sequence type 131 (ST131), a globally dominant pathogenic clone causing urinary tract and bloodstream infections. Here we report a detailed investigation of its intestinal lifestyle. Methods: Clinical ST131 isolates and type 1 fimbriae null mutants were assessed for colonization of human intestinal epithelia and in mouse intestinal colonization models. Mouse gut tissue underwent histologic analysis for pathology and ST131 localization. Key findings were corroborated in mucus-producing human cell lines and intestinal biopsy specimens. Results: ST131 strains adhered to and invaded human intestinal epithelial cells more than probiotic and commensal strains. The reference ST131 strain EC958 established persistent intestinal colonization in mice, and expression of type 1 fimbriae mediated higher colonization levels. Bacterial loads were highest in the distal parts of the mouse intestine and did not cause any obvious pathology. Further analysis revealed that EC958 could bind to both mucus and underlying human intestinal epithelia. Conclusions: ST131 strains can efficiently colonize the mammalian gut and persist long term. Type 1 fimbriae enhance ST131 intestinal colonization, suggesting that mannosides, currently developed as therapeutics for bladder infections and Crohn's disease, could also be used to limit intestinal ST131 reservoirs.


Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/metabolism , Escherichia coli/pathogenicity , Intestines/microbiology , Animals , Bacterial Adhesion , Bacterial Load , Caco-2 Cells , Cell Line , Epithelial Cells/cytology , Epithelial Cells/microbiology , Escherichia coli/classification , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Female , Fimbriae, Bacterial/metabolism , Humans , Intestines/cytology , Mice
14.
Sci Rep ; 6: 35285, 2016 10 21.
Article En | MEDLINE | ID: mdl-27767067

Nitric oxide (NO) is a toxic free radical produced by neutrophils and macrophages in response to infection. Uropathogenic Escherichia coli (UPEC) induces a variety of defence mechanisms in response to NO, including direct NO detoxification (Hmp, NorVW, NrfA), iron-sulphur cluster repair (YtfE), and the expression of the NO-tolerant cytochrome bd-I respiratory oxidase (CydAB). The current study quantifies the relative contribution of these systems to UPEC growth and survival during infection. Loss of the flavohemoglobin Hmp and cytochrome bd-I elicit the greatest sensitivity to NO-mediated growth inhibition, whereas all but the periplasmic nitrite reductase NrfA provide protection against neutrophil killing and promote survival within activated macrophages. Intriguingly, the cytochrome bd-I respiratory oxidase was the only system that augmented UPEC survival in a mouse model after 2 days, suggesting that maintaining aerobic respiration under conditions of nitrosative stress is a key factor for host colonisation. These findings suggest that while UPEC have acquired a host of specialized mechanisms to evade nitrosative stresses, the cytochrome bd-I respiratory oxidase is the main contributor to NO tolerance and host colonisation under microaerobic conditions. This respiratory complex is therefore of major importance for the accumulation of high bacterial loads during infection of the urinary tract.


Cytochromes/genetics , Dihydropteridine Reductase/genetics , Electron Transport Chain Complex Proteins/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Hemeproteins/genetics , Host-Pathogen Interactions , NADH, NADPH Oxidoreductases/genetics , Oxidoreductases/genetics , Uropathogenic Escherichia coli/genetics , Animals , Cytochrome b Group , Cytochrome c Group/deficiency , Cytochrome c Group/genetics , Cytochromes/deficiency , Disease Models, Animal , Drug Resistance, Multiple, Bacterial/genetics , Electron Transport Chain Complex Proteins/deficiency , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Hemeproteins/deficiency , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbial Viability , NADH, NADPH Oxidoreductases/deficiency , Neutrophils/immunology , Neutrophils/microbiology , Nitric Oxide/metabolism , Oxidoreductases/deficiency , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/growth & development
15.
Mol Microbiol ; 101(6): 1069-87, 2016 09.
Article En | MEDLINE | ID: mdl-27309594

Uropathogenic Escherichia coli (UPEC) of sequence type 131 (ST131) are a pandemic multidrug resistant clone associated with urinary tract and bloodstream infections. Type 1 fimbriae, a major UPEC virulence factor, are essential for ST131 bladder colonization. The globally dominant sub-lineage of ST131 strains, clade C/H30-R, possess an ISEc55 insertion in the fimB gene that controls phase-variable type 1 fimbriae expression via the invertible fimS promoter. We report that inactivation of fimB in these strains causes altered regulation of type 1 fimbriae expression. Using a novel read-mapping approach based on Illumina sequencing, we demonstrate that 'off' to 'on' fimS inversion is reduced in these strains and controlled by recombinases encoded by the fimE and fimX genes. Unlike typical UPEC strains, the nucleoid-associated H-NS protein does not strongly repress fimE transcription in clade C ST131 strains. Using a genetic screen to identify novel regulators of fimE and fimX in the clade C ST131 strain EC958, we defined a new role for the guaB gene in the regulation of type 1 fimbriae and in colonisation of the mouse bladder. Our results provide a comprehensive analysis of type 1 fimbriae regulation in ST131, and highlight important differences in its control compared to non-ST131 UPEC.


DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Integrases/genetics , Integrases/metabolism , Receptors, Immunologic/metabolism , Virulence Factors/metabolism , Animals , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Female , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Mice , Mice, Inbred C57BL , Uropathogenic Escherichia coli/metabolism , Virulence Factors/genetics
16.
Pathog Dis ; 74(3)2016 Apr.
Article En | MEDLINE | ID: mdl-26940589

Escherichia coli sequence type 131 (ST131) has emerged as a pandemic lineage of important multidrug resistant pathogens worldwide. Despite many studies examining the epidemiology of ST131, only a few studies to date have investigated the capacity of ST131 strains to form biofilms. Some of these studies have reported contrasting findings, with no specific ST131 biofilm-promoting factors identified. Here, we examined a diverse collection of ST131 isolates for in vitro biofilm formation in different media and assay conditions, including urine from healthy adult women. We found significant differences among strains and assay conditions, which offers an explanation for the contrasting findings reported by previous studies using a single condition. Importantly, we showed that expression of type 1 fimbriae is a critical determinant for biofilm formation by ST131 strains and that inhibition of the FimH adhesin significantly reduces biofilm formation. We also offer direct genetic evidence for the contribution of type 1 fimbriae in biofilm formation by the reference ST131 strain EC958, a representative of the clinically dominant H30-Rx ST131 subgroup. This is the first study of ST131 biofilm formation in biologically relevant conditions and paves the way for the application of FimH inhibitors in treating drug resistant ST131 biofilm infections.


Bacteriuria/microbiology , Biofilms/growth & development , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Fimbriae, Bacterial/classification , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Adult , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli/classification , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Female , Fimbriae Proteins/antagonists & inhibitors , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Humans , Urinary Tract Infections/microbiology
17.
mBio ; 6(6): e01602-15, 2015 Nov 17.
Article En | MEDLINE | ID: mdl-26578678

UNLABELLED: Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located. IMPORTANCE: DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone.


DNA Methylation , DNA, Bacterial/metabolism , Genotype , Methyltransferases/metabolism , Uropathogenic Escherichia coli/enzymology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Global Health , Humans , Methyltransferases/genetics , Urinary Tract Infections/epidemiology , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/classification , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/isolation & purification
18.
PLoS One ; 10(4): e0122369, 2015.
Article En | MEDLINE | ID: mdl-25875675

Escherichia coli sequence type 131 (E. coli ST131) is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections. Plasmids represent a major vehicle for the carriage of antibiotic resistance genes in E. coli ST131. In this study, we determined the complete sequence and performed a comprehensive annotation of pEC958, an IncF plasmid from the E. coli ST131 reference strain EC958. Plasmid pEC958 is 135.6 kb in size, harbours two replicons (RepFIA and RepFII) and contains 12 antibiotic resistance genes (including the blaCTX-M-15 gene). We also carried out hyper-saturated transposon mutagenesis and multiplexed transposon directed insertion-site sequencing (TraDIS) to investigate the biology of pEC958. TraDIS data showed that while only the RepFII replicon was required for pEC958 replication, the RepFIA replicon contains genes essential for its partitioning. Thus, our data provides direct evidence that the RepFIA and RepFII replicons in pEC958 cooperate to ensure their stable inheritance. The gene encoding the antitoxin component (ccdA) of the post-segregational killing system CcdAB was also protected from mutagenesis, demonstrating this system is active. Sequence comparison with a global collection of ST131 strains suggest that IncF represents the most common type of plasmid in this clone, and underscores the need to understand its evolution and contribution to the spread of antibiotic resistance genes in E. coli ST131.


Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/genetics , Escherichia coli/genetics , Plasmids/genetics , Base Sequence , DNA Transposable Elements/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Genome, Bacterial/drug effects , Humans , Mutagenesis , Replicon/genetics , Sequence Analysis, DNA , beta-Lactamases/genetics
19.
J Antimicrob Chemother ; 70(7): 1969-72, 2015 Jul.
Article En | MEDLINE | ID: mdl-25786480

OBJECTIVES: Escherichia coli ST131 is a globally disseminated MDR clone originally identified due to its association with the blaCTX-M-15 gene encoding an ESBL. It is thus assumed that blaCTX-M-15 is the major determinant for resistance to ß-lactam antibiotics in this clone. The complete sequence of EC958, a reference strain for E. coli ST131, revealed that it contains a chromosomally located blaCMY-23 gene with an upstream ISEcp1 element as well as several additional plasmid-encoded ß-lactamase genes. Here, we examined the genetic context of the blaCMY-23 element in EC958 and other E. coli ST131 strains and investigated the contribution of blaCMY-23 to EC958 resistance to a range of ß-lactam antibiotics. METHODS: The genetic context of blaCMY-23 and its associated mobile elements was determined by PCR and sequencing. Antibiotic susceptibility testing was performed using Etests. The activity of the blaCMY-23 promoter was assessed using lacZ reporter assays. Mutations were generated using λ-Red-recombination. RESULTS: The genetic structure of the ISEcp1-IS5-blaCMY-23 mobile element was determined and localized within the betU gene on the chromosome of EC958 and five other E. coli ST131 strains. The transcription of blaCMY-23, driven by a previously defined promoter within ISEcp1, was significantly higher than other ß-lactamase genes and could be induced by cefotaxime. Deletion of the blaCMY-23 gene resulted in enhanced susceptibility to cefoxitin, cefotaxime and ceftazidime. CONCLUSIONS: This is the first known report to demonstrate the chromosomal location of blaCMY-23 in E. coli ST131. In EC958, CMY-23 plays a major role in resistance to third-generation cephalosporins and cephamycins.


Cephalosporin Resistance , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/enzymology , beta-Lactamases/metabolism , Artificial Gene Fusion , Chromosomes, Bacterial , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli Proteins/genetics , Gene Expression Profiling , Genes, Reporter , Interspersed Repetitive Sequences , Polymerase Chain Reaction , Promoter Regions, Genetic , Sequence Analysis, DNA , beta-Galactosidase/analysis , beta-Galactosidase/genetics , beta-Lactamases/genetics
20.
Infect Immun ; 83(5): 1749-64, 2015 May.
Article En | MEDLINE | ID: mdl-25667270

Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.


Adaptation, Biological , Bacteriuria/microbiology , Carrier State/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Evolution, Molecular , Urinary Tract/microbiology , Adult , Animals , Bacterial Adhesion , Cell Line , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Epithelial Cells/microbiology , Escherichia coli/isolation & purification , Female , Genome, Bacterial , Humans , Mice, Inbred C57BL , Models, Animal , Molecular Sequence Data , Sequence Analysis, DNA
...