Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758505

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Cardiomegaly , Isoproterenol , NAV1.5 Voltage-Gated Sodium Channel , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Rats , Cell Line , Isoproterenol/pharmacology , Myocytes, Cardiac/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Animals , Gene Knockdown Techniques , Humans , Myoblasts, Cardiac/metabolism , Energy Metabolism/genetics , Gene Expression Regulation/genetics
2.
iScience ; 27(2): 108764, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38313048

Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem and a potential risk factor for metabolic diseases. The bidirectional interactions between liver and gut made dysbiotic gut microbiome one of the key risk factors for NAFLD. In this study, we reported an increased abundance of Collinsella aerofaciens in the gut of obese and NASH patients living in India. We isolated C. aerofaciens from the fecal samples of biopsy-proven NASH patients and observed that their genome is enriched with carbohydrate metabolism, fatty acid biosynthesis, and pro-inflammatory functions and have the potency to increase ethanol level in blood. An animal study indicated that mice supplemented with C. aerofaciens had increased levels of circulatory ethanol, high levels of hepatic hydroxyproline, triglyceride, and inflammation in the liver. The present findings indicate that perturbation in the gut microbiome composition is a key risk factor for NAFLD.

3.
Heliyon ; 9(11): e22051, 2023 Nov.
Article En | MEDLINE | ID: mdl-38027691

We evaluated the effects of select herbal extracts (Tinospora cordifolia [TC], Tinospora cordifolia with Piper longum [TC + PL], Withania somnifera [WS], Glycyrrhiza glabra [GG], AYUSH-64 [AY-64], and Saroglitazar [S]) on various parameters in a diet-induced obesity mouse model. After 12 weeks of oral administration of the herbal extracts in high-fat diet (HFD)-fed C57BL/6J mice, we analyzed plasma biochemical parameters, insulin resistance (IR), liver histology, and the expression of inflammatory and fibrosis markers, along with hepatic lipidome. We also used a 3D hepatic spheroid model to assess their impact on profibrotic gene expression. Among the extracts, TC + PL showed a significant reduction in IR, liver weight, TNF-α, IL4, IL10 expression, and hepatic lipid levels (saturated triglycerides, ceramides, lysophosphocholines, acylcarnitines, diglycerides, and phosphatidylinositol levels). Saroglitazar reversed changes in body weight, IR, plasma triglycerides, glucose, insulin, and various hepatic lipid species (fatty acids, phospholipids, glycerophospholipids, sphingolipids, and triglycerides). With the exception of GG, Saroglitazar, and other extracts protected against palmitic acid-induced fibrosis marker gene expression in the 3D spheroids. TC + PL and Saroglitazar also effectively prevented HFD-induced insulin resistance, inflammation, and specific harmful lipid species in the liver.

4.
Mol Omics ; 19(10): 787-799, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-37534494

The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.


Metabolic Syndrome , Rats , Animals , Metabolic Syndrome/drug therapy , Metabolic Syndrome/prevention & control , Blood Glucose/analysis , Blood Glucose/metabolism , Lysimachia , Fructose , Rats, Sprague-Dawley , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Phenotype , Amino Acids/metabolism , Disease Progression , Candida/metabolism
5.
Article En | MEDLINE | ID: mdl-37285928

Diet-induced obesity mouse models are widely utilized to investigate the underlying mechanisms of dyslipidemia, glucose intolerance, insulin resistance, hepatic steatosis, and type 2 diabetes mellitus (T2DM), as well as for screening potential drug compounds. However, there is limited knowledge regarding specific signature lipids that accurately reflect dietary disorders. In this study, we aimed to identify key lipid signatures using LC/MS-based untargeted lipidomics in the plasma, liver, adipose tissue (AT), and skeletal muscle tissues (SKM) of male C57BL/6J mice that were fed chow, LFD, or obesogenic diets (HFD, HFHF, and HFCD) for a duration of 20 weeks. Furthermore, we conducted a comprehensive lipid analysis to assess similarities and differences with human lipid profiles. The mice fed obesogenic diets exhibited weight gain, glucose intolerance, elevated BMI, glucose and insulin levels, and a fatty liver, resembling characteristics of T2DM and obesity in humans. In total, we identified approximately 368 lipids in plasma, 433 in the liver, 493 in AT, and 624 in SKM. Glycerolipids displayed distinct patterns across the tissues, differing from human findings. However, changes in sphingolipids, phospholipids, and the expression of inflammatory and fibrotic genes showed similarities to reported human findings. Significantly modulated pathways in the obesogenic diet-fed groups included ceramide de novo synthesis, sphingolipid remodeling, and the carboxylesterase pathway, while lipoprotein-mediated pathways were minimally affected. This study provides a tissue-specific comparison of lipid composition, highlighting the usefulness of DIO models in preclinical research. However, caution is warranted when extrapolating findings from these models to dyslipidemia-associated pathologies and their complications in humans.


Diabetes Mellitus, Type 2 , Dyslipidemias , Fatty Liver , Glucose Intolerance , Humans , Male , Mice , Animals , Glucose Intolerance/complications , Glucose Intolerance/prevention & control , Insulin , Diabetes Mellitus, Type 2/complications , Mice, Inbred C57BL , Obesity/metabolism , Diet , Fatty Liver/metabolism , Phospholipids/metabolism , Sphingolipids , Dyslipidemias/complications
6.
J Biomol Struct Dyn ; 41(4): 1458-1478, 2023 03.
Article En | MEDLINE | ID: mdl-34971346

Alterations in the nuclear retinoid X receptor (RXRs) signalling have been implicated in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis and glaucoma. Single nucleotide polymorphisms (SNPs) are the main cause underlying single nucleic acid variations which in turn determine heterogeneity within various populations. These genetic polymorphisms have been suggested to associate with various degenerative disorders in population-wide analysis. This bioinformatics study was designed to investigate, search, retrieve and identify deleterious SNPs which may affect the structure and function of various RXR isoforms through a computational and molecular modelling approach. Amongst the 1,813 retrieved SNPs several were found to be deleterious with rs140464195_G139R, rs368400425_R358W and rs368586400_L383F RXRα mutant variants being the most detrimental ones causing changes in the interatomic interactions and decreasing the flexibility of the mutant proteins. Molecular genetics analysis identified seven missense mutations in RXRα/ß/γ isoforms. Two novel mutations SNP IDs (rs1588299621 and rs1057519958) were identified in RXRα isoform. We used several in silico prediction tools such as SIFT, PolyPhen, I-Mutant, Protein Variation Effect Analyzer (PROVEAN), PANTHER, SNP&Go, PhD-SNP and SNPeffect to predict pathogenicity and protein stability associated with RXR mutations. The structural assessment by DynaMut tool revealed that hydrogen bonds were affected along with hydrophobic and carbonyl interactions resulting in reduced flexibility at the mutated residue positions but ultimately stabilizing the molecule as a whole. Summarizing, analysis of the missense mutations in RXR isoforms showed a mix of conclusive and inconclusive genotype-phenotype correlations suggesting the use of sophisticated computational analysis tools for studying RXR variants.Communicated by Ramaswamy H. Sarma.


Mutation, Missense , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Retinoid X Receptors/genetics , Models, Molecular , Mutation , Computational Biology/methods
7.
Oxid Med Cell Longev ; 2022: 5554290, 2022.
Article En | MEDLINE | ID: mdl-35726330

Objectives: Transition from cardiac hypertrophy to failure involves adverse metabolic reprogramming involving mitochondrial dysfunction. We have earlier shown that vitamin D deficiency induces heart failure, at least in part, through insulin resistance. However, whether activation of vitamin D receptor (VDR) can attenuate heart failure and underlying metabolic phenotype requires investigation. Thus, we aimed to assess the cardioprotective potential of paricalcitol, a vitamin D receptor-activator, against cardiac hypertrophy and failure in high-fat high-fructose-fed rats. Methods: Male Sprague Dawley rats were fed control (Con) or high-fat high-fructose (HFHFrD) diet for 20 weeks. After 12 weeks, rats from HFHFrD group were divided into the following: HFHFrD, HFHFrD+P (paricalcitol i.p. 0.08 µg/kg/day) and HFHFrD+E (enalapril maleate i.p. 10 mg/kg/day). Intraperitoneal glucose tolerance test, blood pressure measurement, and 2D echocardiography were performed. Cardiac fibrosis was assessed by Masson's trichrome staining of paraffin-embedded heart sections. Mitochondrial DNA and proteins, and citrate synthase activity were measured in rat hearts. VDR was silenced in H9c2 cardiomyoblasts, and immunoblotting was performed. Results: Paricalcitol improved glucose tolerance, serum lipid profile, and blood pressure in high-fat high-fructose-fed rats. Paricalcitol reduced cardiac wall thickness and increased ejection fraction in high-fat high-fructose-fed rats but had no effect on perivascular fibrosis. PGC1-α was upregulated in the HFHFrD+P group compared to the HFHFrD group, but there was no significant difference in mitochondrial content. Citrate synthase activity was significantly higher in the HFHFrD+P group compared to the HFHFrD group. Rat hearts of the HFHFrD+P group had significantly higher expression of mitofusins. H9c2 cells with VDR knockdown showed significantly lower expression of Mfn2. Improvement in the HFHFrD+P group was comparable with that in the HFHFrD+E group. Conclusions: Paricalcitol reverses cardiac dysfunction in rats with metabolic syndrome by enhancing mitochondrial fusion. We demonstrate repurposing potential of the drug currently used in end-stage kidney disease.


Heart Failure , Metabolic Syndrome , Animals , Cardiomegaly , Citrate (si)-Synthase , Ergocalciferols , Fructose , Heart Failure/drug therapy , Male , Metabolic Syndrome/complications , Metabolic Syndrome/drug therapy , Mitochondrial Dynamics , Rats , Rats, Sprague-Dawley , Receptors, Calcitriol/metabolism
9.
Mol Neurobiol ; 59(4): 2027-2050, 2022 Apr.
Article En | MEDLINE | ID: mdl-35015251

Retinoid X receptors (RXRs) present a subgroup of the nuclear receptor superfamily with particularly high evolutionary conservation of ligand binding domain. The receptor exists in α, ß, and γ isotypes that form homo-/heterodimeric complexes with other permissive and non-permissive receptors. While research has identified the biochemical roles of several nuclear receptor family members, the roles of RXRs in various neurological disorders remain relatively under-investigated. RXR acts as ligand-regulated transcription factor, modulating the expression of genes that plays a critical role in mediating several developmental, metabolic, and biochemical processes. Cumulative evidence indicates that abnormal RXR signalling affects neuronal stress and neuroinflammatory networks in several neuropathological conditions. Protective effects of targeting RXRs through pharmacological ligands have been established in various cell and animal models of neuronal injury including Alzheimer disease, Parkinson disease, glaucoma, multiple sclerosis, and stroke. This review summarises the existing knowledge about the roles of RXR, its interacting partners, and ligands in CNS disorders. Future research will determine the importance of structural and functional heterogeneity amongst various RXR isotypes as well as elucidate functional links between RXR homo- or heterodimers and specific physiological conditions to increase drug targeting efficiency in pathological conditions.


Nervous System Diseases , Receptors, Cytoplasmic and Nuclear , Animals , Gene Expression Regulation , Ligands , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptors/metabolism
10.
Biomed Pharmacother ; 144: 112357, 2021 Dec.
Article En | MEDLINE | ID: mdl-34794234

Higher global prevalence of non-alcoholic fatty liver disease (NAFLD) is associated with obesity, steatosis, and insulin resistance (IR), and often progresses to steatohepatitis (NASH). Even after more than twenty years of research, there is still no FDA approved therapy for the treatment of fatty liver disease/NASH though, Saroglitazar - a dual PPAR α/γ agonist has been recently approved as a therapeutic option for the fatty liver disease in India. Hepatoprotective Ayurvedic formulations are widely used and are considered safe. In the present study, C57BL/6 male mice on HFHF diet for four weeks were treated with vehicle, Saroglitazar (3 mg/kg/po), and Hepano - a formulation of five herbs (200 mg/kg/po), at the human equivalent therapeutic doses for additional eight weeks. These animals were evaluated after 12 weeks for obesity, body mass index (BMI), systemic insulin resistance, hyperglycaemia, dyslipidaemia, and hepatic lipid accumulation. Differential liquid chromatography-mass spectrometry (LC-MS/MS) based lipidomics analysis demonstrated significant changes in the different class of lipids [phospholipids, sphingolipids, diglycerides and triglycerides (TG)] in HFHF fed group. The protective effects of both Saroglitazar and Hepano were evident against IR, obesity and in the modulation of different class of lipids in the circulation and hepatic tissue. Saroglitazar reduced TG as well as modulated phospholipids levels, while Hepano modulated only phospholipids, ceramides, oxidised lipids, and had no effect on hepatic or circulating TG levels in HFHF fed mice. In addition, in vitro studies using HepG2, THP1 and LX2 cells demonstrated safety of both the test substances where Hepano possess better anti-inflammatory as well as anti-fibrotic potential. Overall, Saroglitazar seems to be more efficacious than Hepano in the regimen used against HFHF induced IR, obesity, and dyslipidaemia.


Diet, High-Fat , Fatty Liver/prevention & control , Fructose/adverse effects , Hypolipidemic Agents/therapeutic use , Insulin Resistance , Lipid Metabolism/drug effects , Liver/metabolism , Obesity/prevention & control , Phenylpropionates/therapeutic use , Pyrroles/therapeutic use , Animals , Cell Line , Diet , Fatty Liver/etiology , Humans , Lipidomics , Lipids/blood , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/etiology
11.
Cells ; 10(8)2021 07 31.
Article En | MEDLINE | ID: mdl-34440715

Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid ß (Aß) and plaques in the brain, which are pathological hallmarks of Alzheimer's disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer's drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.


Alzheimer Disease/drug therapy , Brain/drug effects , Cathepsin B/antagonists & inhibitors , Drug Design , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Alzheimer Disease/enzymology , Animals , Brain/enzymology , Cathepsin B/chemistry , Cathepsin B/metabolism , Computer-Aided Design , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Protease Inhibitors/chemistry , Protein Conformation , Structure-Activity Relationship
12.
Front Pharmacol ; 12: 653872, 2021.
Article En | MEDLINE | ID: mdl-33935766

Fatty liver is one of the most common metabolic syndrome affecting the global population. Presently, limited treatment modalities with symptomatic approach are available for alleviating fatty liver. Traditional and herbal treatment modalities have shown evidence to improve the disease pathology. In the present research work, evaluation of a selected medicinal plant Lysimachia candida Lindl. was carried out to investigate its beneficial effects on fatty liver disease in rats. Male Sprague Dawley (SD) rats were fed with high-fat high-fructose diet to induce fatty liver phenotypes. After induction for 15 weeks, methanolic extract of Lysimachia candida Lindl. (250 mg/kg b. w. p. o.) was administrated to the rats daily for the next 17 weeks. Blood samples were collected at different time points to analyze fasting blood glucose levels and relevant biochemical parameters important for the assessment of metabolic disease phenotypes. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression and how the medicinally important plant extract treatment reversed the metabolic diseases. Multivariate data analysis approaches have been employed to understand the metabolome changes and disease pathology. This study has identified the interplay of some metabolic pathways that alter the disease progression and their reversal after administration of the plant extract. Different group of metabolites mainly bile acids, fatty acids, carnitines, and their derivatives were found to be altered in the diseased rats. However, all the metabolites identified between control and disease groups are mainly related to lipid metabolism. The results depict that the treatment with the above-mentioned plant extract improves the regulation of aberrant lipid metabolism, and reverses the metabolic syndrome phenotype. Therefore, the present study reveals the potential mechanism of the herbal extract to prevent metabolic syndrome in rats.

13.
Life Sci ; 260: 118404, 2020 Nov 01.
Article En | MEDLINE | ID: mdl-32920003

AIM: NAFLD is a chronic and progressive disease for which there are no FDA-approved drugs available in the market. Drug discovery is a time-consuming procedure and requires screening of hundreds of small molecules to find new chemical entities (NECs) for a particular disease. Current preclinical NAFLD animal models take a longer time, which enhances the duration and expenses of the screening procedure. Hence to shorten the duration, we have proposed a preclinical animal model for rapid induction of non-alcoholic steatohepatitis (NASH), an advanced stage of NAFLD in rats. METHODOLOGY: The animals were divided into three groups; control, high fat choline deficient (HFCD) and high fat choline deficient diet with sodium nitrite (40 mg/kg b.w. i.p. per day) (HFCD + NaNO2) respectively. Four weeks later physical and serum biochemical parameters were assessed, intraperitoneal glucose tolerance test was performed, and histopathology and gene expression were analysed. KEY FINDINGS: Hypoxic stress aggravates the lipid accumulation, ballooning, lobular inflammation and fibrosis in hepatic tissue in presence of HFCD diet. SIGNIFICANCE: This novel rodent model could be a useful NAFLD model to screen small molecules rapidly for treatment of NASH.


Choline Deficiency/complications , Diet, High-Fat/adverse effects , Disease Models, Animal , Hypoxia/complications , Non-alcoholic Fatty Liver Disease/etiology , Animals , Gene Expression Profiling , Glucose Tolerance Test , Male , Non-alcoholic Fatty Liver Disease/pathology , Pilot Projects , Rats , Rats, Sprague-Dawley
...