Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928373

RESUMEN

Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated by trans-SNARE complexes, with assistance from Sec1/Munc18 (SM) proteins. The SNARE protein KNOLLE and the SM protein KEULE are required for membrane fusion at the cell plate. Due to the crucial function of KEULE, all Arabidopsis (Arabidopsis thaliana) keule mutants identified to date are seedling lethal. Here, we identified the Arabidopsis serrata4-1 (sea4-1) and sea4-2 mutants, which carry recessive, hypomorphic alleles of KEULE. Homozygous sea4-1 and sea4-2 plants are viable and fertile but have smaller rosettes and fewer leaves at bolting than the wild type. Their leaves are serrated, small, and wavy, with a complex venation pattern. The mutant leaves also develop necrotic patches and undergo premature senescence. RNA-seq revealed transcriptome changes likely leading to reduced cell wall integrity and an increase in the unfolded protein response. These findings shed light on the roles of KEULE in postembryonic development, particularly in the patterning of rosette leaves and leaf margins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
2.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915646

RESUMEN

Zinc knuckle (ZCCHC) motif-containing proteins are present in unicellular and multicellular eukaryotes and most ZCCHC proteins with known functions participate in the metabolism of various classes of RNA, such as mRNAs, ribosomal RNAs, and microRNAs. The Arabidopsis (Arabidopsis thaliana) genome encodes 69 ZCCHC-containing proteins, but the functions of most remain unclear. One of these proteins is CAX-INTERACTING PROTEIN 4 (CXIP4), which has been classified as a PTHR31437 family member, along with human SREK1-interacting protein 1 (SREK1IP1), which is thought to function in pre-mRNA splicing and RNA methylation. Metazoan SREK1IP1-like and plant CXIP4-like proteins only share a ZCCHC motif, and their functions remain almost entirely unknown. We studied two loss-of-function alleles of Arabidopsis CXIP4, the first mutations in PTHR31437 family genes described to date: cxip4-1 is likely null and shows early lethality, and cxip4-2 is hypomorphic and viable, with pleiotropic morphological defects. The cxip4-2 mutant exhibited deregulation of defense genes and upregulation of transcription factor encoding genes, some of which might explain its developmental defects. This mutant also exhibited increased intron retention events, and the specific functions of misspliced genes, such as those involved in "gene silencing by DNA methylation" and "mRNA polyadenylation factor" suggest that CXIP4 has additional functions. The CXIP4 protein localizes to the nucleus in a pattern resembling nuclear speckles, which are rich in splicing factors. Therefore, CXIP4 is required for plant survival and proper development, and mRNA maturation.

3.
Plant Sci ; 335: 111819, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562732

RESUMEN

Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.


Asunto(s)
Arabidopsis , Ribonucleótido Reductasas , Humanos , Proteína 1 que Contiene Dominios SAM y HD/genética , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fenotipo
4.
Plant Physiol ; 184(4): 2022-2039, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32913045

RESUMEN

Ribosome biogenesis is crucial for cellular metabolism and has important implications for disease and aging. Human (Homo sapiens) glioma tumor-suppressor candidate region gene2 (GLTSCR2) and yeast (Saccharomyces cerevisiae) Nucleolar protein53 (Nop53) are orthologous proteins with demonstrated roles as ribosome biogenesis factors; knockdown of GLTSCR2 impairs maturation of 18S and 5.8S ribosomal RNAs (rRNAs), and Nop53 is required for maturation of 5.8S and 25S rRNAs. Here, we characterized SMALL ORGAN4 (SMO4), the most likely ortholog of human GLTSCR2 and yeast Nop53 in Arabidopsis (Arabidopsis thaliana). Loss of function of SMO4 results in a mild morphological phenotype; however, we found that smo4 mutants exhibit strong cytological and molecular phenotypes: nucleolar hypertrophy and disorganization, overaccumulation of 5.8S and 18S rRNA precursors, and an imbalanced 40S:60S ribosome subunit ratio. Like yeast Nop53 and human GLTSCR2, Arabidopsis SMO4 participates in 5.8S rRNA maturation. In yeast, Nop53 cooperates with mRNA transport4 (Mtr4) for 5.8S rRNA maturation. In Arabidopsis, we found that SMO4 plays similar roles in the 5.8S rRNA maturation pathway than those described for MTR4. However, SMO4 seems not to participate in the degradation of by-products derived from the 5'-external transcribed spacer (ETS) of 45S pre-rRNA, as MTR4 does.


Asunto(s)
Arabidopsis/anatomía & histología , Arabidopsis/genética , Factor Promotor de Maduración/genética , ARN Ribosómico 5.8S/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Fenotipo
5.
Nucleic Acids Res ; 47(21): e140, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31544937

RESUMEN

Forward genetic screens have successfully identified many genes and continue to be powerful tools for dissecting biological processes in Arabidopsis and other model species. Next-generation sequencing technologies have revolutionized the time-consuming process of identifying the mutations that cause a phenotype of interest. However, due to the cost of such mapping-by-sequencing experiments, special attention should be paid to experimental design and technical decisions so that the read data allows to map the desired mutation. Here, we simulated different mapping-by-sequencing scenarios. We first evaluated which short-read technology was best suited for analyzing gene-rich genomic regions in Arabidopsis and determined the minimum sequencing depth required to confidently call single nucleotide variants. We also designed ways to discriminate mutagenesis-induced mutations from background Single Nucleotide Polymorphisms in mutants isolated in Arabidopsis non-reference lines. In addition, we simulated bulked segregant mapping populations for identifying point mutations and monitored how the size of the mapping population and the sequencing depth affect mapping precision. Finally, we provide the computational basis of a protocol that we already used to map T-DNA insertions with paired-end Illumina-like reads, using very low sequencing depths and pooling several mutants together; this approach can also be used with single-end reads as well as to map any other insertional mutagen. All these simulations proved useful for designing experiments that allowed us to map several mutations in Arabidopsis.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutagénesis Insercional/métodos , Polimorfismo de Nucleótido Simple/genética , ADN Bacteriano/genética , Genoma de Planta/genética , Mutagénesis Sitio-Dirigida/métodos
6.
Plant Cell ; 30(11): 2855-2872, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30361235

RESUMEN

Ribosome biogenesis is fundamental to growth and development in eukaryotes and is linked to human diseases and cancer. Arabidopsis thaliana MORPHOLOGY OF ARGONAUTE1-52 SUPPRESSED 2 (MAS2) participates in splicing and 45S ribosomal DNA (rDNA) expression. In a screen for MAS2 interactors, we identified RIBOSOMAL RNA PROCESSING 7 (RRP7), an ortholog of yeast rRNA processing protein 7 (Rrp7), which is required for 18S ribosomal RNA (rRNA) maturation. Arabidopsis rrp7 mutants exhibit a pleiotropic phenotype including slow growth, altered shoot phyllotaxy, aberrant venation in lateral organs, partial infertility, and abscisic acid hypersensitivity in seedlings. In Arabidopsis, RRP7 localizes mainly to the nucleolus, the site of the 45S rDNA transcription that produces a 45S pre-rRNA primary transcript, precursor of the 25S, 18S and 5.8S rRNAs. Lack of RRP7 function perturbs 18S rRNA maturation, causes nucleolar hypertrophy, and results in an increased 25S/18S rRNA ratio. Arabidopsis contains hundreds of 45S rDNA genes whose expression is epigenetically regulated, and deregulated, in rrp7 mutants. Double mutant analysis revealed synergistic interactions between RRP7 alleles and alleles of MAS2, NUCLEOLIN1 (NUC1), and HISTONE DEACETYLASE 6 (HDA6), which encode epigenetic regulators of 45S rDNA transcription. Our results reveal the evolutionarily conserved but divergent roles of RRP7 as a ribosome biogenesis factor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación de la Expresión Génica de las Plantas , ARN Ribosómico 18S/genética , Proteínas de Unión al ARN/genética
8.
Plant Sci ; 266: 117-129, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29241561

RESUMEN

To enhance our understanding of the roles of mitochondrial transcription termination factors (mTERFs) in plants, we have taken a reverse genetic approach in Arabidopsis thaliana. One of the mutants isolated carried a novel allele of the mTERF6 gene, which we named mterf6-5. mTERF6 is a chloroplast and mitochondrial localised protein required for the maturation of chloroplast isoleucine tRNA. The mterf6-5 plants are pale and exhibit markedly reduced growth, and altered leaf and chloroplast development. Our qRT-PCR analyses revealed mis-expression of several plastid, mitochondrial and nuclear genes in mterf6-5 plants. Synergistic phenotypes were observed in double mutant combinations of mterf6-5 with alleles of other mTERF genes as well as with scabra3-2, affected in the plastid RpoTp RNA polymerase; these observations suggest a functional relationship between mTERF6, other mTERFs and SCA3. The mterf6-5 mutation also enhanced the leaf dorsoventral polarity defects of the asymmetric leaves1-1 (as1-1) mutant, which resulted in radial leaves. This interaction seemed specific of the impaired mTERF6 function because mutations in the mTERF genes MDA1 or TWR-1/mTERF9 did not result in radialised leaves. Furthermore, the mterf6-5 mutation dramatically increased the leaf phenotype of as2-1 and caused lethality early in vegetative development. Our results uncover a new role for mTERF6 in leaf patterning and highlight the importance of mTERFs in plant development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Mitocondriales/genética , Hojas de la Planta/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Mitocondriales/metabolismo , Fenotipo , Hojas de la Planta/crecimiento & desarrollo
9.
Sci Rep ; 7(1): 6164, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733652

RESUMEN

Biomass production requires the coordination between growth and metabolism. In a large-scale screen for mutants affected in leaf morphology, we isolated the orbiculata1 (orb1) mutants, which exhibit a pale green phenotype and reduced growth. The combination of map-based cloning and next-generation sequencing allowed us to establish that ORB1 encodes the GLUTAMATE SYNTHASE 1 (GLU1) enzyme, also known as FERREDOXIN-DEPENDENT GLUTAMINE OXOGLUTARATE AMINOTRANSFERASE 1 (Fd-GOGAT1). We performed an RNA-seq analysis to identify global gene expression changes in the orb1-3 mutant. We found altered expression levels of genes encoding enzymes involved in nitrogen assimilation and amino acid biosynthesis, such as glutamine synthetases, asparagine synthetases and glutamate dehydrogenases, showing that the expression of these genes depends on the levels of glutamine and/or glutamate. In addition, we observed a concerted upregulation of genes encoding subunits of the cytosolic ribosome. A gene ontology (GO) analysis of the differentially expressed genes between Ler and orb1-3 showed that the most enriched GO terms were 'translation', 'cytosolic ribosome' and 'structural constituent of ribosome'. The upregulation of ribosome-related functions might reflect an attempt to keep protein synthesis at optimal levels even when the pool of glutamate is reduced.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Glutamato Sintasa/genética , Ácido Glutámico/deficiencia , Proteínas Ribosómicas/genética , Arabidopsis/genética , Vías Biosintéticas , Mapeo Cromosómico , Clonación Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Regulación hacia Arriba
10.
PLoS One ; 8(1): e53378, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23308205

RESUMEN

The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hidroximetilbilano Sintasa/genética , Desarrollo de la Planta/genética , Hojas de la Planta/genética , Reproducción/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biliverdina/análogos & derivados , Biliverdina/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hemo/metabolismo , Hidroximetilbilano Sintasa/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutación , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/metabolismo , Porfobilinógeno/metabolismo , Reproducción/efectos de los fármacos
11.
Plant J ; 68(4): 738-53, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21790815

RESUMEN

Little is known about the mechanisms that control transcription of the mitochondrial and chloroplastic genomes, and their interplay within plant cells. Here, we describe the positional cloning of the Arabidopsis RUG2 gene, which encodes a protein that is dual-targeted to mitochondria and chloroplasts, and is homologous with the metazoan mitochondrial transcription termination factors (mTERFs). In the loss-of-function rug2 mutants, most organs were pale and showed reduced growth, and the leaves exhibited both green and pale sectors, with the latter containing sparsely packed mesophyll cells. Chloroplast and mitochondrion development were strongly perturbed in the rug2-1 mutant, particularly in pale leaf sectors, in which chloroplasts were abnormally shaped and reduced in number, thereby impairing photoautotrophic growth. As expected from the pleiotropic phenotypes caused by its loss-of-function alleles, the RUG2 gene was ubiquitously expressed. In a microarray analysis of the mitochondrial and chloroplastic genomes, 56 genes were differentially expressed between rug2-1 and the wild type: most mitochondrial genes were downregulated, whereas the majority of the chloroplastic genes were upregulated. Quantitative RT-PCR analyses showed that the rug2-1 mutation specifically increases expression of the RpoTp nuclear gene, which encodes chloroplastic RNA polymerase. Therefore, the RUG2 nuclear gene seems to be crucial for the maintenance of the correct levels of transcripts in the mitochondria and chloroplasts, which is essential for optimized functions of these organelles and proper plant development. Our results highlight the complexity of the functional interaction between these two organelles and the nucleus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Mitocondrias/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/ultraestructura , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/ultraestructura
12.
Plant J ; 65(3): 335-45, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21265888

RESUMEN

Arabidopsis thaliana reticulate mutants exhibit differential pigmentation of the veinal and interveinal leaf regions, a visible phenotype that often indicates impaired mesophyll development. We performed a metabolomic analysis of one ven6 (venosa6) and three ven3 reticulate mutants that revealed altered levels of arginine precursors, namely increased ornithine and reduced citrulline levels. In addition, the mutants were more sensitive than the wild-type to exogenous ornithine, and leaf reticulation and mesophyll defects of these mutants were completely rescued by exogenous citrulline. Taken together, these results indicate that ven3 and ven6 mutants experience a blockage of the conversion of ornithine into citrulline in the arginine pathway. Consistent with the participation of VEN3 and VEN6 in the same pathway, the morphological phenotype of ven3 ven6 double mutants was synergistic. Map-based cloning showed that the VEN3 and VEN6 genes encode subunits of Arabidopsis carbamoyl phosphate synthetase (CPS), which is assumed to be required for the conversion of ornithine into citrulline in arginine biosynthesis. Heterologous expression of the Arabidopsis VEN3 and VEN6 genes in a CPS-deficient Escherichia coli strain fully restored bacterial growth in minimal medium, demonstrating the enzymatic activity of the VEN3 and VEN6 proteins, and indicating a conserved role for CPS in these distinct and distant species. Detailed study of the reticulate leaf phenotype in the ven3 and ven6 mutants revealed that mesophyll development is highly sensitive to impaired arginine biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arginina/biosíntesis , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Mutación , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arginina/farmacología , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Citrulina/genética , Citrulina/metabolismo , Citrulina/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Metanosulfonato de Etilo/farmacología , Células del Mesófilo/metabolismo , Metabolómica , Datos de Secuencia Molecular , Morfogénesis/genética , Ornitina/genética , Ornitina/metabolismo , Ornitina/farmacología , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA