Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
EBioMedicine ; 99: 104924, 2024 Jan.
Article En | MEDLINE | ID: mdl-38113758

BACKGROUND: COVID-19 vaccines used in humans are highly effective in limiting disease and death caused by the SARS-CoV-2 virus, yet improved vaccines that provide greater protection at mucosal surfaces, which could reduce break-through infections and subsequent transmission, are still needed. METHODS: Here we tested an intranasal (I.N.) vaccination with the receptor binding domain of Spike antigen of SARS-CoV-2 (S-RBD) in combination with the mucosal adjuvant mastoparan-7 compared with the sub-cutaneous (S.C.) route, adjuvanted by either M7 or the gold-standard adjuvant, alum, in mice, for immunological read-outs. The same formulation delivered I.N. or S.C. was tested in hamsters to assess efficacy. FINDINGS: I.N. vaccination improved systemic T cell responses compared to an equivalent dose of antigen delivered S.C. and T cell phenotypes induced by I.N. vaccine administration included enhanced polyfunctionality (combined IFN-γ and TNF expression) and greater numbers of T central memory (TCM) cells. These phenotypes were T cell-intrinsic and could be recalled in the lungs and/or brachial LNs upon antigen challenge after adoptive T cell transfer to naïve recipients. Furthermore, mucosal vaccination induced antibody responses that were similarly effective in neutralising the binding of the parental strain of S-RBD to its ACE2 receptor, but showed greater cross-neutralising capacity against multiple variants of concern (VOC), compared to S.C. vaccination. I.N. vaccination provided significant protection from lung pathology compared to unvaccinated animals upon challenge with homologous and heterologous SARS-CoV-2 strains in a hamster model. INTERPRETATION: These results highlight the role of nasal vaccine administration in imprinting an immune profile associated with long-term T cell retention and diversified neutralising antibody responses, which could be applied to improve vaccines for COVID-19 and other infectious diseases. FUNDING: This study was funded by Duke-NUS Medical School, the Singapore Ministry of Education, the National Medical Research Council of Singapore and a DBT-BIRAC Grant.


COVID-19 Vaccines , COVID-19 , Cricetinae , Humans , Animals , Mice , Rodentia , Broadly Neutralizing Antibodies , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral
2.
Sci Transl Med ; 15(719): eadd2420, 2023 10 25.
Article En | MEDLINE | ID: mdl-37878671

Zika virus (ZIKV) is a mosquito-borne flavivirus that can vertically transmit from mother to fetus, potentially causing congenital defects, including microcephaly. It is not fully understood why some fetuses experience severe complications after in utero exposure to ZIKV, whereas others do not. Given the antigenic similarity between ZIKV and the closely related virus dengue (DENV) and the potential of DENV-specific antibodies to enhance ZIKV disease severity in mice, we questioned whether maternal DENV immunity could influence fetal outcomes in a nonhuman primate model of ZIKV vertical transmission. We found significantly increased severity of congenital Zika syndrome (CZS) in fetuses of DENV-immune cynomolgus macaques infected with ZIKV in early pregnancy compared with naïve controls, which occurred despite no effect on maternal ZIKV infection or antibody responses. Ultrasound measurements of head circumference and biparietal diameter measurements taken sequentially throughout pregnancy demonstrated CZS in fetuses of DENV-immune pregnant macaques. Furthermore, severe CZS enhanced by DENV immunity was typified by reduced cortical thickness and increased frequency of neuronal death, hemorrhaging, cellular infiltrations, calcifications, and lissencephaly in fetal brains. This study shows that maternal immunity to DENV can worsen ZIKV neurological outcomes in fetal primates, and it provides an animal model of vertical transmission closely approximating human developmental timelines that could be used to investigate severe ZIKV disease outcomes and interventions in fetuses.


Dengue , Microcephaly , Zika Virus Infection , Zika Virus , Pregnancy , Humans , Female , Animals , Mice , Zika Virus Infection/complications , Microcephaly/complications , Fetus , Dengue/complications , Macaca , Antibodies, Viral
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article En | MEDLINE | ID: mdl-35012987

Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.


Aedes/virology , Dengue Virus/physiology , Dengue/transmission , Dengue/virology , Feeding Behavior/physiology , Host-Pathogen Interactions/physiology , Animals , Behavior, Animal/physiology , Multivariate Analysis
4.
Viruses ; 13(5)2021 05 12.
Article En | MEDLINE | ID: mdl-34066286

Sub-neutralizing concentrations of antibodies in dengue infected patients is a major risk factor for the development of dengue hemorrhagic fever and dengue shock syndrome. Here, we describe a mouse model with a deficiency in mast cells (MCs) in addition to a deficiency in Type-I and II IFN receptors for studying dengue virus (DENV) infection. We used this model to understand the influence of MCs in a maternal antibody-dependent model of severe dengue, where offspring born to DENV-immune mothers are challenged with a heterologous DENV serotype. Mice lacking both MCs and IFN receptors were found susceptible to primary DENV infection and showed morbidity and mortality. When these mice were immunized, pups born to DENV-immune mothers were found to be protected for a longer duration from a heterologous DENV challenge. In the absence of MCs and type-I interferon signaling, IFN-γ was found to protect pups born to naïve mothers but had the opposite effect on pups born to DENV-immune mothers. Our results highlight the complex interactions between MCs and IFN-signaling in influencing the role of maternal antibodies in DENV-induced disease severity.


Immunity, Maternally-Acquired , Mast Cells/immunology , Maternal Exposure , Prenatal Exposure Delayed Effects , Severe Dengue/diagnosis , Severe Dengue/etiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue Virus/immunology , Disease Models, Animal , Disease Susceptibility , Female , Immunocompromised Host , Mast Cells/metabolism , Mice , Mice, Knockout , Pregnancy , Receptor, Interferon alpha-beta/deficiency , Severity of Illness Index
5.
medRxiv ; 2021 Jun 01.
Article En | MEDLINE | ID: mdl-34100020

Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in severely ill patients and the pathophysiology of disease is thought to be immune-mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens, often promoting inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and non-human primates. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype. MC activation in humans was confirmed, through detection of the MC-specific protease, chymase, levels of which were significantly correlated with disease severity. These results support the association of MC activation with severe COVID-19, suggesting potential strategies for intervention.

6.
Viruses ; 12(12)2020 12 02.
Article En | MEDLINE | ID: mdl-33276578

Dengue virus (DENV), an arbovirus, strongly activates mast cells (MCs), which are key immune cells for pathogen immune surveillance. In animal models, MCs promote clearance of local peripheral DENV infections but, conversely, also promote pathological vascular leakage when widely activated during systemic DENV infection. Since DENV is a human pathogen, we sought to ascertain whether a similar phenomenon could occur in humans by characterizing the products released by human MCs (huMCs) upon direct (antibody-independent) DENV exposure, using the phenotypically mature huMC line, ROSA. DENV did not productively infect huMCs but prompted huMC release of proteases and eicosanoids and induced a Th1-polarized transcriptional profile. In co-culture and trans-well systems, huMC products activated human microvascular endothelial cells, involving transcription of vasoactive mediators and increased monolayer permeability. This permeability was blocked by MC-stabilizing drugs, or limited by drugs targeting certain MC products. Thus, MC stabilizers are a viable strategy to limit MC-promoted vascular leakage during DENV infection in humans.


Dengue Virus/immunology , Dengue/immunology , Dengue/metabolism , Endothelium, Vascular/metabolism , Mast Cells/physiology , Th1 Cells/physiology , Transcriptional Activation , Biomarkers , Capillary Permeability , Cell Degranulation/immunology , Dengue/virology , Endothelial Cells , Endothelium, Vascular/immunology , Fluorescent Antibody Technique , Gene Expression Profiling , Histocytochemistry , Host-Pathogen Interactions/immunology , Humans , Lymphocyte Activation , Macrophages/immunology , Macrophages/metabolism , Mast Cells/cytology
7.
Science ; 370(6519): 941-950, 2020 11 20.
Article En | MEDLINE | ID: mdl-33122426

Mast cells (MCs) are central effector cells in allergic reactions that are often mediated by immunoglobulin E (IgE). Allergies commonly start at an early age, and both MCs and IgE are detectable in fetuses. However, the origin of fetal IgE and whether fetal MCs can degranulate in response to IgE-dependent activation are presently unknown. Here, we show that human and mouse fetal MCs phenotypically mature through pregnancy and can be sensitized by maternal IgE. IgE crossed the placenta, dependent on the fetal neonatal Fc receptor (FcRN), and sensitized fetal MCs for allergen-specific degranulation. Both passive and active prenatal sensitization conferred allergen sensitivity, resulting in postnatal skin and airway inflammation after the first allergen encounter. We report a role for MCs within the developing fetus and demonstrate that fetal MCs may contribute to antigen-specific vertical transmission of allergic disease.


Fetus/immunology , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Maternal-Fetal Exchange/immunology , Allergens/immunology , Ambrosia/immunology , Animals , Cell Degranulation/immunology , Female , Histocompatibility Antigens Class I/physiology , Humans , Mice , Mice, Inbred C57BL , Placenta/immunology , Pregnancy , Receptors, Fc/physiology
8.
Sci Adv ; 5(2): eaav3208, 2019 02.
Article En | MEDLINE | ID: mdl-30820456

Zika virus (ZIKV), an emergent flaviviral pathogen, has been linked to microcephaly in neonates. Although the risk is greatest during the first trimester of pregnancy in humans, timing alone cannot explain why maternal ZIKV infection leads to severe microcephaly in some fetuses, but not others. The antigenic similarities between ZIKV and dengue virus (DENV), combined with high levels of DENV immunity among ZIKV target populations in recent outbreaks, suggest that anti-DENV maternal antibodies could promote ZIKV-induced microcephaly. We demonstrated maternal-to-fetal ZIKV transmission, fetal infection, and disproportionate microcephaly in immunocompetent mice. We show that DENV-specific antibodies in ZIKV-infected pregnant mice enhance vertical ZIKV transmission and result in a severe microcephaly-like syndrome, which was dependent on the neonatal Fc receptor, FcRN. This novel immune-mediated mechanism of vertical transmission of viral infection is of special concern because ZIKV epidemic regions are also endemic to DENV.


Antibodies, Viral/immunology , Dengue Virus/immunology , Immunity, Maternally-Acquired , Microcephaly/etiology , Zika Virus Infection/complications , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Biopsy , Disease Models, Animal , Disease Susceptibility/immunology , Female , Immunohistochemistry , Mice , Microcephaly/diagnosis , Phenotype , Pregnancy , Zika Virus Infection/virology
9.
Sci Adv ; 4(7): eaar4297, 2018 07.
Article En | MEDLINE | ID: mdl-29978039

How previous immunity influences immune memory recall and protection against related flaviviruses is largely unknown, yet encounter with multiple flaviviruses in a lifetime is increasingly likely. Using sequential challenges with dengue virus (DENV), yellow fever virus (YFV), and Japanese encephalitis virus (JEV), we induced cross-reactive cellular and humoral immunity among flaviviruses from differing serocomplexes. Antibodies against JEV enhanced DENV replication; however, JEV immunity was protective in vivo during secondary DENV1 infection, promoting rapid gains in antibody avidity. Mechanistically, JEV immunity activated dendritic cells and effector memory T cells, which developed a T follicular helper cell phenotype in draining lymph nodes upon secondary DENV1 infection. We identified cross-reactive epitopes that promote recall from a pool of flavivirus serocomplex cross-reactive memory CD4 T cells and confirmed that a similar serocomplex cross-reactive immunity occurs in humans. These results show that sequential immunizations for flaviviruses sharing CD4 epitopes should promote protection during a subsequent heterologous infection.


CD4-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Flavivirus/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Dengue Virus/classification , Dengue Virus/immunology , Encephalitis Virus, Japanese/classification , Encephalitis Virus, Japanese/immunology , Epitopes/chemistry , Epitopes/immunology , Flavivirus/classification , Humans , Immunity, Cellular , Immunity, Humoral , Immunologic Memory , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL , Phylogeny , Yellow fever virus/classification , Yellow fever virus/immunology
10.
Nat Microbiol ; 1: 16164, 2016 Sep 19.
Article En | MEDLINE | ID: mdl-27642668

Vaccination has achieved remarkable successes in the control of childhood viral diseases. To control emerging infections, however, vaccines will need to be delivered to older individuals who, unlike infants, probably have had prior infection or vaccination with related viruses and thus have cross-reactive antibodies against the vaccines. Whether and how these cross-reactive antibodies impact live attenuated vaccination efficacy is unclear. Using an open-label randomized trial design, we show that subjects with a specific range of cross-reactive antibody titres from a prior inactivated Japanese encephalitis vaccination enhanced yellow fever (YF) immunogenicity upon YF vaccination. Enhancing titres of cross-reactive antibodies prolonged YF vaccine viraemia, provoked greater pro-inflammatory responses, and induced adhesion molecules intrinsic to the activating Fc-receptor signalling pathway, namely immune semaphorins, facilitating immune cell interactions and trafficking. Our findings clinically demonstrate antibody-enhanced infection and suggest that vaccine efficacy could be improved by exploiting cross-reactive antibodies.

...