Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Nat Commun ; 15(1): 4430, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789420

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


BRCA1 Protein , BRCA2 Protein , DNA Replication , Drug Resistance, Neoplasm , Histones , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Female , Humans , Mice , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/deficiency , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Histones/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Mice, Nude
2.
Genes Dev ; 37(3-4): 119-135, 2023 02 01.
Article En | MEDLINE | ID: mdl-36746606

DNA double-strand break (DSB) repair is initiated by DNA end resection. CtIP acts in short-range resection to stimulate MRE11-RAD50-NBS1 (MRN) to endonucleolytically cleave 5'-terminated DNA to bypass protein blocks. CtIP also promotes the DNA2 helicase-nuclease to accelerate long-range resection downstream from MRN. Here, using AlphaFold2, we identified CtIP-F728E-Y736E as a separation-of-function mutant that is still proficient in conjunction with MRN but is not able to stimulate ssDNA degradation by DNA2. Accordingly, CtIP-F728E-Y736E impairs physical interaction with DNA2. Cellular assays revealed that CtIP-F728E-Y736E cells exhibit reduced DSB-dependent chromatin-bound RPA, impaired long-range resection, and increased sensitivity to DSB-inducing drugs. Previously, CtIP was shown to be targeted by PLK1 to inhibit long-range resection, yet the underlying mechanism was unclear. We show that the DNA2-interacting region in CtIP includes the PLK1 target site at S723. The integrity of S723 in CtIP is necessary for the stimulation of DNA2, and phosphorylation of CtIP by PLK1 in vitro is consequently inhibitory, explaining why PLK1 restricts long-range resection. Our data support a model in which CDK-dependent phosphorylation of CtIP activates resection by MRN in S phase, and PLK1-mediated phosphorylation of CtIP disrupts CtIP stimulation of DNA2 to attenuate long-range resection later at G2/M.


Carrier Proteins , DNA Breaks, Double-Stranded , Carrier Proteins/genetics , Endodeoxyribonucleases/metabolism , DNA Repair , DNA Helicases/genetics , DNA Helicases/metabolism , DNA
3.
Cells ; 11(4)2022 02 12.
Article En | MEDLINE | ID: mdl-35203293

Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.


DNA Breaks, Double-Stranded , DNA Repair , Endodeoxyribonucleases , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Genes, Tumor Suppressor , Homologous Recombination , Humans , RNA Interference , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Cell Rep ; 36(9): 109649, 2021 08 31.
Article En | MEDLINE | ID: mdl-34469738

CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.


Brain/enzymology , DNA Damage , DNA Mismatch Repair , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Huntingtin Protein/genetics , Huntington Disease/enzymology , Multifunctional Enzymes/metabolism , MutL Protein Homolog 1/metabolism , Trinucleotide Repeat Expansion , Animals , Binding, Competitive , Brain/pathology , Cell Line, Tumor , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , HEK293 Cells , Humans , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Mice , Multifunctional Enzymes/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 3 Protein/genetics , MutS Homolog 3 Protein/metabolism , Protein Binding , Protein Interaction Domains and Motifs
6.
Mol Cell Biol ; 41(9): e0030321, 2021 08 24.
Article En | MEDLINE | ID: mdl-34228493

Germline mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1, and PMS2 are linked to cancer of the colon and other organs, characterized by microsatellite instability and a large increase in mutation frequency. Unexpectedly, mutations in EXO1, encoding the only exonuclease genetically implicated in MMR, are not linked to familial cancer and cause a substantially weaker mutator phenotype. This difference could be explained if eukaryotic cells possessed additional exonucleases redundant with EXO1. Analysis of the MLH1 interactome identified FANCD2-associated nuclease 1 (FAN1), a novel enzyme with biochemical properties resembling EXO1. We now show that FAN1 efficiently substitutes for EXO1 in MMR assays and that this functional complementation is modulated by its interaction with MLH1. FAN1 also contributes to MMR in vivo; cells lacking both EXO1 and FAN1 have an MMR defect and display resistance to N-methyl-N-nitrosourea (MNU) and 6-thioguanine (TG). Moreover, FAN1 loss amplifies the mutational profile of EXO1-deficient cells, suggesting that the two nucleases act redundantly in the same antimutagenic pathway. However, the increased drug resistance and mutator phenotype of FAN1/EXO1-deficient cells are less prominent than those seen in cells lacking MSH6 or MLH1. Eukaryotic cells thus apparently possess additional mechanisms that compensate for the loss of EXO1.


Avian Proteins/metabolism , DNA Mismatch Repair , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Multifunctional Enzymes/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Chickens , Endodeoxyribonucleases/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/deficiency , Exodeoxyribonucleases/genetics , Guanosine/analogs & derivatives , HEK293 Cells , Humans , Methylnitronitrosoguanidine , Multifunctional Enzymes/chemistry , Mutation/genetics , Thionucleosides
7.
Sci Adv ; 7(31)2021 07.
Article En | MEDLINE | ID: mdl-34330701

FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington's disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle-regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.


Endodeoxyribonucleases , Exodeoxyribonucleases , DNA , DNA Damage , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Multifunctional Enzymes/genetics
9.
Nat Chem ; 13(6): 540-548, 2021 06.
Article En | MEDLINE | ID: mdl-33833446

The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.


Drug Delivery Systems , Immunoglobulin Variable Region/pharmacology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Animals , Cell Line, Tumor , DNA/chemistry , Drug Discovery , Fluorescence , Gene Library , Humans , Immunoglobulin Variable Region/chemistry , Mice , Microscopy, Fluorescence , Neoplasms , Neoplasms, Experimental
10.
Sci Adv ; 7(8)2021 02.
Article En | MEDLINE | ID: mdl-33608267

Cancer cells display high levels of DNA damage and replication stress, vulnerabilities that could be exploited by drugs targeting DNA repair proteins. Human CtIP promotes homology-mediated repair of DNA double-strand breaks (DSBs) and protects stalled replication forks from nucleolytic degradation, thus representing an attractive candidate for targeted cancer therapy. Here, we establish a peptide mimetic of the CtIP tetramerization motif that inhibits CtIP activity. The hydrocarbon-stapled peptide encompassing amino acid residues 18 to 28 of CtIP (SP18-28) stably binds to CtIP tetramers in vitro and facilitates their aggregation into higher-order structures. Efficient intracellular uptake of SP18-28 abrogates CtIP localization to damaged chromatin, impairs DSB repair, and triggers extensive fork degradation. Moreover, prolonged SP18-28 treatment causes hypersensitivity to DNA-damaging agents and selectively reduces the viability of BRCA1-mutated cancer cell lines. Together, our data provide a basis for the future development of CtIP-targeting compounds with the potential to treat patients with cancer.

11.
J Huntingtons Dis ; 10(1): 95-122, 2021.
Article En | MEDLINE | ID: mdl-33579867

FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.


DNA Repair/genetics , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Genes, Modifier/genetics , Genomic Instability/genetics , Huntington Disease/genetics , Multifunctional Enzymes/genetics , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Humans
12.
Semin Cell Dev Biol ; 113: 47-56, 2021 05.
Article En | MEDLINE | ID: mdl-32950401

Human CtIP was originally identified as an interactor of the retinoblastoma protein and BRCA1, two bona fide tumour suppressors frequently mutated in cancer. CtIP is renowned for its role in the resection of DNA double-strand breaks (DSBs) during homologous recombination, a largely error-free DNA repair pathway crucial in maintaining genome integrity. However, CtIP-dependent DNA end resection is equally accountable for alternative end-joining, a mutagenic DSB repair mechanism implicated in oncogenic chromosomal translocations. In addition, CtIP contributes to transcriptional regulation of G1/S transition, DNA damage checkpoint signalling, and replication fork protection pathways. In this review, we present a perspective on the current state of knowledge regarding the tumour-suppressive and oncogenic properties of CtIP and provide an overview of their relevance for cancer development, progression, and therapy.


Carcinogenesis/genetics , DNA Repair/genetics , Humans
13.
Adv Sci (Weinh) ; 7(22): 2001970, 2020 Nov.
Article En | MEDLINE | ID: mdl-33240760

A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.

14.
Cell Rep ; 32(8): 108068, 2020 08 25.
Article En | MEDLINE | ID: mdl-32846126

Using genome-wide radiogenetic profiling, we functionally dissect vulnerabilities of cancer cells to ionizing radiation (IR). We identify ERCC6L2 as a major determinant of IR response, together with classical DNA damage response genes and members of the recently identified shieldin and CTC1-STN1-TEN1 (CST) complexes. We show that ERCC6L2 contributes to non-homologous end joining (NHEJ), and it may exert this function through interactions with SFPQ. In addition to causing radiosensitivity, ERCC6L2 loss restores DNA end resection and partially rescues homologous recombination (HR) in BRCA1-deficient cells. As a consequence, ERCC6L2 deficiency confers resistance to poly (ADP-ribose) polymerase (PARP) inhibition in tumors deficient for both BRCA1 and p53. Moreover, we show that ERCC6L2 mutations are found in human tumors and correlate with a better overall survival in patients treated with radiotherapy (RT); this finding suggests that ERCC6L2 is a predictive biomarker of RT response.


DNA End-Joining Repair/radiation effects , DNA Helicases/metabolism , Animals , Humans , Mice
15.
DNA Repair (Amst) ; 77: 96-108, 2019 05.
Article En | MEDLINE | ID: mdl-30928893

DNA double-strand breaks (DSBs) induced by genotoxic agents can cause cell death or contribute to chromosomal instability, a major driving force of cancer. By contrast, Spo11-dependent DSBs formed during meiosis are aimed at generating genetic diversity. In eukaryotes, CtIP and the Mre11 nuclease complex are essential for accurate processing and repair of both unscheduled and programmed DSBs by homologous recombination (HR). Here, we applied bioinformatics and genetic analysis to identify Paramecium tetraurelia CtIP (PtCtIP), the smallest known Sae2/Ctp1/CtIP ortholog, as a key factor for the completion of meiosis and the recovery of viable sexual progeny. Using in vitro assays, we find that purified recombinant PtCtIP preferentially binds to double-stranded DNA substrates but does not contain intrinsic nuclease activity. Moreover, mutation of the evolutionarily conserved C-terminal 'RHR' motif abrogates DNA binding of PtCtIP but not its ability to functionally interact with Mre11. Translating our findings into mammalian cells, we provide evidence that disruption of the 'RHR' motif abrogates accumulation of human CtIP at sites of DSBs. Consequently, cells expressing the DNA binding mutant CtIPR837A/R839A are defective in DSB resection and HR. Collectively, our work highlights minimal structural requirements for CtIP protein family members to facilitate the processing of DSBs, thereby maintaining genome stability as well as enabling sexual reproduction.


DNA Breaks, Double-Stranded , DNA Repair , Paramecium tetraurelia/genetics , Paramecium tetraurelia/physiology , Protozoan Proteins/metabolism , Sequence Homology, Amino Acid , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , DNA, Protozoan/metabolism , Meiosis/genetics , Paramecium tetraurelia/metabolism , Protozoan Proteins/chemistry , Reproduction/genetics
16.
Mol Cell ; 73(6): 1089-1091, 2019 03 21.
Article En | MEDLINE | ID: mdl-30901561

In this issue of Molecular Cell, Zong et al. (2019) reveal RNF168-driven chromatin ubiquitylation as a key back-up mechanism to sustain homologous recombination (HR) independently of BRCA1. These findings provide new clues to carcinogenesis and cancer therapy in BRCA1 heterozygous mutation carriers.


Chromatin , Haploinsufficiency , BRCA1 Protein/genetics , Cell Line, Tumor , Homologous Recombination , Ubiquitination
17.
Front Oncol ; 9: 1388, 2019.
Article En | MEDLINE | ID: mdl-31921645

DNA double-strand breaks (DSBs) are highly deleterious, with a single unrepaired DSB being sufficient to trigger cell death. Compared to healthy cells, cancer cells have a higher DSB burden due to oncogene-induced replication stress and acquired defects in DNA damage response (DDR) mechanisms. Consequently, hyperproliferating cancer cells rely on efficient DSB repair for their survival. Moreover, augmented DSB repair capacity is a major cause of radio- and chemoresistance and, ultimately, cancer recurrence. Although inherited DDR defects can predispose individuals to develop certain cancers, the very same vulnerability may be therapeutically exploited to preferentially kill tumor cells. A paradigm for DNA repair targeted therapy has emerged in cancers that exhibit mutations in BRCA1 or BRCA2 tumor suppressor genes, conferring a strong defect in homologous recombination, a major and error-free DSB repair pathway. Clinical validation of such approaches, commonly described as synthetic lethality (SL), has been provided by the regulatory approval of poly(ADP-ribose) polymerase 1 inhibitors (PARPi) as monotherapy for BRCA1/2-mutated breast and ovarian tumors. In this review, we will describe the different DSB repair mechanisms and discuss how their specific features could be exploited for cancer therapy. A major emphasis is put on advances in combinatorial treatment modalities and SL approaches arising from DSB repair pathway interdependencies.

18.
Mol Cell ; 72(3): 568-582.e6, 2018 11 01.
Article En | MEDLINE | ID: mdl-30344097

Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells.


Carrier Proteins/metabolism , Carrier Proteins/physiology , DNA Replication/physiology , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , BRCA1 Protein , BRCA2 Protein , Cell Line , DNA Breaks, Double-Stranded , DNA Helicases/physiology , DNA Repair , DNA-Binding Proteins , Deoxyribonucleases , Endodeoxyribonucleases , Genomic Instability/physiology , Homologous Recombination/genetics , Humans , MRE11 Homologue Protein/metabolism , Protein Binding
19.
Cancer Cell ; 33(6): 1094-1110.e8, 2018 06 11.
Article En | MEDLINE | ID: mdl-29805078

Breast cancer is the second leading cause of cancer-related death among women. Here we report a role for the protein kinase p38α in coordinating the DNA damage response and limiting chromosome instability during breast tumor progression, and identify the DNA repair regulator CtIP as a p38α substrate. Accordingly, decreased p38α signaling results in impaired ATR activation and homologous recombination repair, with concomitant increases in replication stress, DNA damage, and chromosome instability, leading to cancer cell death and tumor regression. Moreover, we show that pharmacological inhibition of p38α potentiates the effects of taxanes by boosting chromosome instability in murine models and patient-derived xenografts, suggesting the potential interest of combining p38α inhibitors with chemotherapeutic drugs that induce chromosome instability.


Breast Neoplasms/drug therapy , Chromosomal Instability/drug effects , DNA Damage , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Taxoids/pharmacology , Xenograft Model Antitumor Assays , Animals , Benzamides/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Female , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Targeted Therapy , Pyridones/pharmacology , Recombinational DNA Repair/drug effects , Recombinational DNA Repair/genetics
20.
Mol Cancer Ther ; 17(7): 1392-1404, 2018 07.
Article En | MEDLINE | ID: mdl-29654063

Under conditions of genotoxic stress, cancer cells strongly rely on efficient DNA repair to survive and proliferate. The human BRCA2 tumor suppressor protein is indispensable for the repair of DNA double-strand breaks by homologous recombination (HR) by virtue of its ability to promote RAD51 loading onto single-stranded DNA. Therefore, blocking the interaction between BRCA2 and RAD51 could significantly improve the efficacy of conventional anticancer therapies. However, targeting protein-protein interaction (PPI) interfaces has proven challenging because flat and large PPI surfaces generally do not support binding of small-molecule inhibitors. In contrast, peptides are more potent for targeting PPIs but are otherwise difficult to deliver into cells. Here, we report that a synthetic 16-mer peptide derived from the BRC4 repeat motif of BRCA2 is capable of blocking RAD51 binding to BRCA2. Efficient noncytotoxic cellular uptake of a nona-arginine (R9)-conjugated version of the BRC4 peptide interferes with DNA damage-induced RAD51 foci formation and HR. Moreover, transduction of the BRC4 peptide impairs replication fork-protective function of BRCA2 and triggers MRE11-dependent degradation of nascent DNA in response to DNA replication stress. Finally, the BRC4 cell-penetrating peptide (CPP) confers selective hypersensitivity to PARP inhibition in cancer cells but spares noncancerous cells. Taken together, our data highlight an innovative approach to develop novel peptide-based DNA repair inhibitors and establish BRCA2-derived CPPs as promising anticancer agents. Mol Cancer Ther; 17(7); 1392-404. ©2018 AACR.


BRCA2 Protein/metabolism , Cell-Penetrating Peptides/pharmacology , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism , Amino Acid Sequence , BRCA2 Protein/chemistry , Cell Line, Tumor , Cell-Penetrating Peptides/chemistry , DNA Replication/drug effects , Homologous Recombination/drug effects , Humans , MRE11 Homologue Protein/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Protein Binding/drug effects , Proteolysis , Rad51 Recombinase/antagonists & inhibitors
...