Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 18(5): 1307-1316, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31729822

RESUMEN

Recent advances in genome engineering technologies based on designed endonucleases (DE) allow specific and predictable alterations in plant genomes to generate value-added traits in crops of choice. The EXZACT Precision technology, based on zinc finger nucleases (ZFN), has been successfully used in the past for introduction of precise mutations and transgenes to generate novel and desired phenotypes in several crop species. Current methods for delivering ZFNs into plant cells are based on traditional genetic transformation methods that result in stable integration of the nuclease in the genome. Here, we describe for the first time, an alternative ZFN delivery method where plant cells are transfected with ZFN protein that eliminates the need for stable nuclease genomic integration and allows generation of edited, but not transgenic cells or tissues. For this study, we designed ZFNs targeting the wheat IPK1 locus, purified active ZFN protein from bacterial cultures, complexed with cell-penetrating peptides (CPP) and directly transfected the complex into either wheat microspores or embryos. NGS analysis of ZFN-treated material showed targeted edits at the IPK1 locus in independent experiments. This is the first description of plant microspore genome editing by a ZFN when delivered as a protein complexed with CPP.


Asunto(s)
Péptidos de Penetración Celular , Edición Génica , Endonucleasas/metabolismo , Haploidia , Triticum/genética , Triticum/metabolismo , Nucleasas con Dedos de Zinc , Dedos de Zinc
2.
Prog Mol Biol Transl Sci ; 149: 47-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28712500

RESUMEN

Over the past two decades, new technologies enabling targeted modification of plant genomes have been developed. Among these are zinc-finger nucleases (ZFNs) which are composed of engineered zinc-finger DNA-binding domains fused with a nuclease, generally the FokI nuclease. The zinc-finger domains are composed of a series of four to six 30 amino acid domains that can bind to trinucleotide sequences giving the entire DNA-binding domain specificity to 12-18 nucleotides. Since the FokI nuclease functions as a dimer, pairs of zinc-finger domains are designed to bind upstream and downstream of the cut site which increases the specificity of the complete ZFN to 24-36 nucleotides. The ability of these engineered nucleases to create targeted double-stranded breaks at designated locations throughout the genome has enabled precise deletion, addition, and editing of genes. These techniques are being used to create new genetic variation by deleting or editing endogenous gene sequences and enhancing the efficiency of transgenic product development through targeted insertion of transgenes to specific genomic locations and to sequentially add and/or delete transgenes from existing transgenic events.


Asunto(s)
Productos Agrícolas/genética , Ingeniería Genética/métodos , Nucleasas con Dedos de Zinc/metabolismo , Edición Génica , Genoma de Planta , Control Social Formal
3.
Plant Biotechnol J ; 14(4): 1151-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26426390

RESUMEN

Genome modification by homology-directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR-mediated gene exchange of expression cassettes in tobacco BY-2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7-kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4-kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR-mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin-resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN-based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants.


Asunto(s)
Desoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Nicotiana/genética , Southern Blotting , Desoxirribonucleasas/genética , Citometría de Flujo/métodos , Resistencia a la Kanamicina/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Células Vegetales , Plantas Modificadas Genéticamente , Reparación del ADN por Recombinación/genética , Nicotiana/citología , Dedos de Zinc , Proteína Fluorescente Roja
4.
BMC Plant Biol ; 14: 359, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25526789

RESUMEN

BACKGROUND: Transcriptional enhancers are able to increase transcription from heterologous promoters when placed upstream, downstream and in either orientation, relative to the promoter. Transcriptional enhancers have been used to enhance expression of specific promoters in transgenic plants and in activation tagging studies to help elucidate gene function. RESULTS: A transcriptional enhancer from the Sugarcane Bacilliform Virus - Ireng Maleng isolate (SCBV-IM) that can cause increased transcription when integrated into the the genome near maize genes has been identified. In transgenic maize, the SCBV-IM promoter was shown to be comparable in strength to the maize ubiquitin 1 promoter in young leaf and root tissues. The promoter was dissected to identify sequences that confer high activity in transient assays. Enhancer sequences were identified and shown to increase the activity of a heterologous truncated promoter. These enhancer sequences were shown to be more active when arrayed in 4 copy arrays than in 1 or 2 copy arrays. When the enhancer array was transformed into maize plants it caused an increase in accumulation of transcripts of genes near the site of integration in the genome. CONCLUSIONS: The SCBV-IM enhancer can activate transcription upstream or downstream of genes and in either orientation. It may be a useful tool to activate enhance from specific promoters or in activation tagging.


Asunto(s)
Badnavirus/genética , Plantas Modificadas Genéticamente/genética , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética , Zea mays/genética , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Zea mays/metabolismo
5.
Plant Biotechnol J ; 11(9): 1126-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23953646

RESUMEN

Modern agriculture demands crops carrying multiple traits. The current paradigm of randomly integrating and sorting independently segregating transgenes creates severe downstream breeding challenges. A versatile, generally applicable solution is hereby provided: the combination of high-efficiency targeted genome editing driven by engineered zinc finger nucleases (ZFNs) with modular 'trait landing pads' (TLPs) that allow 'mix-and-match', on-demand transgene integration and trait stacking in crop plants. We illustrate the utility of nuclease-driven TLP technology by applying it to the stacking of herbicide resistance traits. We first integrated into the maize genome an herbicide resistance gene, pat, flanked with a TLP (ZFN target sites and sequences homologous to incoming DNA) using WHISKERS™-mediated transformation of embryogenic suspension cultures. We established a method for targeted transgene integration based on microparticle bombardment of immature embryos and used it to deliver a second trait precisely into the TLP via cotransformation with a donor DNA containing a second herbicide resistance gene, aad1, flanked by sequences homologous to the integrated TLP along with a corresponding ZFN expression construct. Remarkably, up to 5% of the embryo-derived transgenic events integrated the aad1 transgene precisely at the TLP, that is, directly adjacent to the pat transgene. Importantly and consistent with the juxtaposition achieved via nuclease-driven TLP technology, both herbicide resistance traits cosegregated in subsequent generations, thereby demonstrating linkage of the two independently transformed transgenes. Because ZFN-mediated targeted transgene integration is becoming applicable across an increasing number of crop species, this work exemplifies a simple, facile and rapid approach to trait stacking.


Asunto(s)
Endonucleasas/genética , Marcación de Gen/métodos , Genoma de Planta/genética , Resistencia a los Herbicidas , Herbicidas/farmacología , Zea mays/genética , Productos Agrícolas , Endonucleasas/metabolismo , Ligamiento Genético , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transgenes , Dedos de Zinc
6.
Food Chem Toxicol ; 50(10): 3776-84, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22813870

RESUMEN

A gene encoding delta 9 desaturase (D9DS), an integral membrane protein, is being considered for incorporation into oilseed crops to reduce saturated fatty acids and thus improve human nutritional value. Typically, a safety assessment for transgenic crops involves purifying heterologously produced transgenic proteins in an active form for use in safety studies. Membrane-bound proteins have been very difficult to isolate in an active form due to their inherent physicochemical properties. Described here are methods used to derive enriched preparations of the active D9DS protein for use in early stage safety studies. Results of these studies, in combination with bioinformatic results and knowledge of the mode of action of the protein, along with a history of safe consumption of related proteins, provides a weight of evidence supporting the safety of the D9DS protein in food and feed.


Asunto(s)
Productos Agrícolas/enzimología , Aceites de Plantas/química , Semillas/química , Estearoil-CoA Desaturasa/metabolismo , Baculoviridae , Membrana Celular , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Valor Nutritivo , Plantas Modificadas Genéticamente , Estearoil-CoA Desaturasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...