Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; 26(9): 1429-1438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584457

RESUMEN

The phytoremediation potential of floating aquatic plants to accumulate and remove two common PFAS from contaminated water was investigated. Free-floating hydrophytes Eichhornia crassipes and Pistia stratiotes were grown in water spiked with 0.5, 1, or 2 ppm perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS) for seven days. Both species were able to accumulate PFOA and PFOS in this time frame, with translocation factors (TF) ranging from 0.13 to 0.57 for P. stratiotes and 0.18 to 0.45 for E. stratiotes, respectively. E. crassipes accumulated a greater amount of PFOA and PFOS than P. stratiotes, with 178.9 ug PFOA and 308.5 ug PFOS removed by E. crassipes and 98.9 ug PFOA and 137.8 ug PFOS removed by P. stratiotes at the highest concentrations. Root tissue contained a higher concentration of PFOA and PFOS than shoot tissue in both species, and the concentration of PFOS was generally significantly higher than PFOA in both E. crassipes and P. stratiotes, with concentrations of 15.39 and 27.32 ppb PFOA and 17.41 and 80.62 ppb PFOS in shoots and roots of P. stratiotes and 12.59 and 37.37 ppb PFOA and 39.92 and 83.40 ppb PFOS in shoots and roots of E. crassipes, respectively. Both species may be candidates for further phytoremediation studies in aquatic ecosystems.


This study investigates the feasibility of using wetland plants for the phytoremediation of PFAS. Prior published studies examine various plant interactions with PFAS but do not evaluate remediation potential of P. stratiotes.


Asunto(s)
Ácidos Alcanesulfónicos , Araceae , Biodegradación Ambiental , Caprilatos , Eichhornia , Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/metabolismo , Caprilatos/metabolismo , Eichhornia/metabolismo , Contaminantes Químicos del Agua/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Araceae/metabolismo
2.
Chem Biodivers ; 6(7): 1111-30, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19623555

RESUMEN

Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.


Asunto(s)
Phaeophyceae/clasificación , Esteroles/química , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Isomerismo , Espectroscopía de Resonancia Magnética , Phaeophyceae/química , Filogenia , Esteroles/análisis
3.
Appl Environ Microbiol ; 75(11): 3598-604, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19363074

RESUMEN

While multiple phylogenetic markers have been used in the culture-independent study of microcystin-producing cyanobacteria, in only a few instances have multiple markers been studied within individual cells, and in all cases these studies have been conducted with cultured isolates. Here, we isolate and evaluate large DNA fragments (>6 kb) encompassing two genes involved in microcystin biosynthesis (mcyA2 and mcyB1) and use them to identify the source of gene fragments found in water samples. Further investigation of these gene loci from individual cyanobacterial cells allowed for improved analysis of the genetic diversity within microcystin producers as well as a method to predict microcystin variants for individuals. These efforts have also identified the source of the novel mcyA genotype previously termed Microcystis-like that is pervasive in the Laurentian Great Lakes and they predict the microcystin variant(s) that it produces.


Asunto(s)
Cianobacterias/clasificación , Cianobacterias/genética , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Genes Bacterianos , Microcistinas/genética , Polimorfismo Genético , Microbiología del Agua , Biodiversidad , ADN Bacteriano/química , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...