Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Biomed Pharmacother ; 164: 114911, 2023 Aug.
Article En | MEDLINE | ID: mdl-37224753

Breast cancers (BCs) remain the leading cause of cancer-related deaths among women worldwide. Among the different types of BCs, treating the highly aggressive, invasive, and metastatic triple-negative BCs (TNBCs) that do not respond to hormonal/human epidermal growth factor receptor 2 (HER2) targeted interventions since they lack ER/PR/HER2 receptors remains challenging. While almost all BCs depend on glucose metabolism for their proliferation and survival, studies indicate that TNBCs are highly dependent on glucose metabolism compared to non-TNBC malignancies. Hence, limiting/inhibiting glucose metabolism in TNBCs should curb cell proliferation and tumor growth. Previous reports, including ours, have shown the efficacy of metformin, the most widely prescribed antidiabetic drug, in reducing cell proliferation and growth in MDA-MB-231 and MDA-MB-468 TNBC cells. In the current study, we investigated and compared the anticancer effects of either metformin (2 mM) in glucose-starved or 2-deoxyglucose (10 mM; glycolytic inhibitor; 2DG) exposed MDA-MB-231 and MDA-MB-468 TNBC cells. Assays for cell proliferation, rate of glycolysis, cell viability, and cell-cycle analysis were performed. The status of proteins of the mTOR pathway was assessed by Western blot analysis. Metformin treatment in glucose-starved and 2DG (10 mM) exposed TNBC cells inhibited the mTOR pathway compared to non-treated glucose-starved cells or 2DG/metformin alone treated controls. Cell proliferation is also significantly reduced under these combination treatment conditions. The results indicate that combining a glycolytic inhibitor and metformin could prove an efficient therapeutic approach for treating TNBCs, albeit the efficacy of the combination treatment may depend on metabolic heterogeneity across various subtypes of TNBCs.


Metformin , Triple Negative Breast Neoplasms , Female , Humans , Metformin/pharmacology , Metformin/therapeutic use , Deoxyglucose/pharmacology , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , TOR Serine-Threonine Kinases , Glucose/metabolism
2.
Biomolecules ; 10(1)2020 01 03.
Article En | MEDLINE | ID: mdl-31947879

Cancer remains one of the most feared and dreaded diseases in this era of modern medicine, claiming the lives of many, and affecting the quality of life of several others around the globe despite major advances in the diagnosis, treatment, palliative care and the immense resources invested into cancer research. While research in cancer has largely focused on the neoplasm/tumor and the cancerous cells that make up the tumor, more recently, the existence, proliferation, differentiation, migration and invasion of cancer stem cells (CSCs) and the role that CSCs play in tumor initiation, progression, metastasis, drug resistance and relapse/recurrence of the disease has gained widespread interest in cancer research. Although the conventional therapeutic approaches such as surgery, chemotherapy and radiation therapy are effective cancer treatments, very often these treatment modalities fail to target the CSCs, which then later become the source of disease recurrence. A majority of the anti-cancer agents target rapidly dividing cancer cells and normal cells and hence, have side effects that are not expected. Targeting CSCs remains a challenge due to their deviant nature with a low proliferation rate and increased drug resistance mechanism. Ascorbic acid/Vitamin C (Vit.C), a potent antioxidant, is a cofactor for several biosynthetic and gene regulatory enzymes and a vital contributor to immune defense of the body, and was found to be deficient in patients with advanced stages of cancer. Vit.C has gained importance in the treatment of cancer due to its ability to modulate the redox status of the cell and influence epigenetic modifications and significant roles in HIF1α signaling. Studies have reported that intravenous administration of Vit.C at pharmacological doses selectively kills tumor cells and targets CSCs when administered along with chemotherapeutic drugs. In the current article, we provide an in-depth review of how Vit.C plays an important role in targeting CSCs and its possible use as an adjuvant, neoadjuvant or co-treatment in the treatment of cancers.


Ascorbic Acid/pharmacology , Neoplastic Stem Cells/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ascorbic Acid/metabolism , Cell Differentiation/drug effects , Cell Transformation, Neoplastic , Combined Modality Therapy , Drug Resistance, Neoplasm/drug effects , Humans , Neoplasms/drug therapy , Neoplastic Stem Cells/metabolism , Signal Transduction/drug effects
3.
Cancers (Basel) ; 11(11)2019 Nov 06.
Article En | MEDLINE | ID: mdl-31698699

Metformin, the most widely used anti-diabetic drug, also exhibits anti-cancer properties; however, the true potential of metformin as an anticancer drug remains largely unknown. In this study using mouse microvascular endothelial cells (MMECs), we investigated the effects of metformin alone or in combination with the glycolytic inhibitor, 2-deoxyglucose (2DG), on angiogenesis-a process known to be an integral part of tumor growth, cancer cell survival and metastasis. MMECs were exposed to 2DG (1-10 mM) for 48 h in the absence or presence of metformin (2 mM). The status of angiogenic and anti-angiogenic marker proteins, proteins of the mTOR pathway and cell-cycle-related proteins were quantified by Western blot analysis. Assays for cell proliferation, migration and tubulogenesis were also performed. We observed robust up-regulation of anti-angiogenic thrombospondin-1 (TSP1) and increased TSP1-CD36 co-localization with a marked decrease in the levels of phosphorylated vascular endothelial growth factor receptor-2 (pVEGFR2; Y1175) in 2DG (5 mM) exposed cells treated with metformin (2 mM). Additionally, treatment with metformin and 2DG (5 mM) inhibited the Akt/mTOR pathway and down-regulated the cell-cycle-related proteins such as p-cyclin B1 (S147) and cyclins D1 and D2 when compared to cells that were treated with either 2DG or metformin alone. Treatment with a combination of 2DG (5 mM) and metformin (2 mM) also significantly decreased cell proliferation, migration and tubulogenic capacity when compared to cells that were treated with either 2DG or metformin alone. The up-regulation of TSP1, inhibition of cell proliferation, migration and tubulogenesis provides support to the argument that the combination of metformin and 2DG may prove to be an appropriate anti-proliferative and anti-angiogenic therapeutic strategy for the treatment of some cancers.

4.
Neuropeptides ; 57: 1-8, 2016 Jun.
Article En | MEDLINE | ID: mdl-26825374

Transient receptor potential channels sensitive to vanilloids (TRPVs) are group of ion channels which are sensitive to various tissue damaging signals and their activation is generally perceived as pain. Therefore, they are generally named as nociceptors. Understanding their activation and function as well as their interaction with intracellular pathways is crucial for the development of pharmacological interference in order to reduce pain perception. The current review summarizes basic facts in regard to TRPV and discusses their relevance in the sensing of (pain-) signals and their intracellular processing, focussing on their modulation of the intracellular calcium ([Ca(2+)]i) signal. Furthermore we discuss the basic mechanisms how the modification of [Ca(2+)]i through TRPV might induce long-term-potentiation (LTP) or long-term- depression (LTD) and from "memories" of pain. Understanding of these mechanisms is needed to localize the best point of interference for pharmacological treatment. Therefore, high attention is given to highlight physiological and pathological processes and their interaction with significant modulators and their roles in neuroplasticity and pain modulation.


Brain/physiology , Neuronal Plasticity , Neurons/physiology , Nociception/physiology , TRPV Cation Channels/physiology , Animals , Brain/metabolism , Calcium Signaling , Humans , Neurons/metabolism , Signal Transduction , TRPV Cation Channels/metabolism
5.
Cancers (Basel) ; 7(2): 823-48, 2015 May 22.
Article En | MEDLINE | ID: mdl-26010602

Neuroblastoma is the second most common paediatric cancer. It developsfrom undifferentiated simpatico-adrenal lineage cells and is mostly sporadic; however, theaetiology behind the development of neuroblastoma is still not fully understood. Intracellularcalcium ([Ca2+]i) is a secondary messenger which regulates numerous cellular processesand, therefore, its concentration is tightly regulated. This review focuses on the role of[Ca2+]i in differentiation, apoptosis and proliferation in neuroblastoma. It describes themechanisms by which [Ca2+]i is regulated and how it modulates intracellular pathways.Furthermore, the importance of [Ca2+]i for the function of anti-cancer drugs is illuminatedin this review as [Ca2+]i could be a target to improve the outcome of anti-cancer treatmentin neuroblastoma. Overall, modulations of [Ca2+]i could be a key target to induce apoptosisin cancer cells leading to a more efficient and effective treatment of neuroblastoma.

...