Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Sci Rep ; 13(1): 9841, 2023 06 17.
Article En | MEDLINE | ID: mdl-37330610

Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor ß (ERß)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERß-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERßKO mice. ERß ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor ß1 (TGF-ß1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERß partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERß in HSCs to attenuate pro-fibrotic mechanisms.


Estradiol , Estrogen Receptor beta , Mice , Female , Animals , Estradiol/pharmacology , Estradiol/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Hepatocytes/metabolism , Liver Cirrhosis/pathology , Hepatic Stellate Cells/metabolism , Fibrosis
2.
bioRxiv ; 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36993459

Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor ß (ERß)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERß-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERßKO mice. ERß ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor ß1 (TGF-ß1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERß partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERß in HSCs to attenuate pro-fibrotic mechanisms.

3.
J Gerontol A Biol Sci Med Sci ; 78(5): 771-779, 2023 05 11.
Article En | MEDLINE | ID: mdl-36762848

We generated a genetically heterogenous rat model by a 4-way cross strategy using 4 inbred strains (Brown Norway [BN], Fischer 344 [F344], Lewis [LEW], and Wistar Kyoto [KY]) to provide investigators with a highly genetically diverse rat model from commercially available inbred rats. We made reciprocal crosses between males and females from the 2 F1 hybrids to generate genetically heterogeneous rats with mitochondrial genomes from either the BN (OKC-HETB, a.k.a "B" genotype) or WKY (OKC-HETW a.k.a "W" genotype) parental strains. These two mitochondrial genomes differ at 94 nucleotides, more akin to human mitochondrial genome diversity than that available in classical laboratory mouse strains. Body weights of the B and W genotypes were similar. However, mitochondrial genotype antagonistically affected grip strength and treadmill endurance in females only. In addition, mitochondrial genotype significantly affected multiple responses to a high-fat diet (HFD) and treatment with 17α-estradiol. Contrary to findings in mice in which males only are affected by 17α-estradiol supplementation, female rats fed a HFD beneficially responded to 17α-estradiol treatment as evidenced by declines in body mass, adiposity, and liver mass. Male rats, by contrast, differed in a mitochondrial genotype-specific manner, with only B males responding to 17α-estradiol treatment. Mitochondrial genotype and sex differences were also observed in features of brain-specific antioxidant response to a HFD and 17α-estradiol as shown by hippocampal levels of Sod2 acetylation, JNK, and FoxO3a. These results emphasize the importance of mitochondrial genotype in assessing responses to putative interventions in aging processes.


Genome, Mitochondrial , Humans , Rats , Female , Male , Animals , Mice , Rats, Inbred F344 , Rats, Inbred WKY , Rats, Inbred Lew , Rats, Inbred Strains , Estradiol
4.
Am J Physiol Endocrinol Metab ; 324(2): E120-E134, 2023 02 01.
Article En | MEDLINE | ID: mdl-36516471

Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17ß-estradiol (17ß-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17ß-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor ß1 (TGF-ß1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-ß1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.


Matrix Metalloproteinase 2 , Transforming Growth Factor beta1 , Male , Mice , Female , Animals , Transforming Growth Factor beta1/pharmacology , Matrix Metalloproteinase 2/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Longevity , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver/metabolism , Collagen/metabolism
5.
J Orthop Res ; 40(12): 2771-2779, 2022 12.
Article En | MEDLINE | ID: mdl-35279877

Obesity promotes the development of osteoarthritis (OA). It is also well-established that obesity leads to excessive lipid deposition in nonadipose tissues, which often induces lipotoxicity. The objective of this study was to investigate changes in the levels of various lipids in mouse cartilage in the context of obesity and determine if chondrocyte de novo lipogenesis is altered. We used Oil Red O to determine the accumulation of lipid droplets in cartilage from mice fed high-fat diet (HFD) or low-fat diet (LFD). We further used mass spectrometry-based lipidomic analyses to quantify levels of different lipid species. Expression of genes involving in fatty acid (FA) uptake, synthesis, elongation, and desaturation were examined using quantitative polymerase chain reaction. To further study the potential mechanisms, we cultured primary mouse chondrocytes under high-glucose and high-insulin conditions to mimic the local microenvironment associated with obesity and subsequently examined the abundance of cellular lipid droplets. The acetyl-CoA carboxylase (ACC) inhibitor, ND-630, was added to the culture medium to examine the effect of inhibiting de novo lipogenesis on lipid accumulation in chondrocytes. When compared to the mice receiving LFD, the HFD group displayed more chondrocytes with visible intracellular lipid droplets. Significantly higher amounts of total FAs were also detected in the HFD group. Five out of six significantly upregulated FAs were ω-6 FAs, while the two significantly downregulated FAs were ω-3 FAs. Consequently, the HFD group displayed a significantly higher ω-6/ω-3 FA ratio. Ether linked phosphatidylcholine was also found to be higher in the HFD group. Fatty acid desaturase (Fad1-3), fatty acid-binding protein 4 (Fabp4), and fatty acid synthase (Fasn) transcripts were not found to be different between the treatment groups and fatty acid elongase (Elovl1-7) transcripts were undetectable in cartilage. Ceramide synthase 2 (Cers-2), the only transcript found to be changed in these studies, was significantly upregulated in the HFD group. In vitro, chondrocytes upregulated de novo lipogenesis when cultured under high-glucose, high-insulin conditions, and this observation was associated with the activation of ACC, which was attenuated by the addition of ND-630. This study provides the first evidence that lipid deposition is increased in cartilage with obesity and that this is associated with the upregulation of ACC-mediated de novo lipogenesis. This was supported by our observation that ACC inhibition ameliorated lipid accumulation in chondrocytes, thereby suggesting that ACC could potentially be targeted to treat obesity-associated OA.


Fatty Acids, Omega-3 , Insulins , Mice , Animals , Lipogenesis/genetics , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/pharmacology , Chondrocytes/metabolism , Liver/metabolism , Obesity/complications , Obesity/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Insulins/metabolism , Insulins/pharmacology
6.
Mech Ageing Dev ; 194: 111425, 2021 03.
Article En | MEDLINE | ID: mdl-33383072

Decline in ovarian reserve with advancing age is associated with reduced fertility and the emergence of metabolic disturbances, osteoporosis, and neurodegeneration. Recent studies have provided insight into connections between ovarian insufficiency and systemic aging, although the basic mechanisms that promote ovarian reserve depletion remain unknown. Here, we sought to determine if chronological age is linked to changes in ovarian cellular senescence, transcriptomic, and epigenetic mechanisms in a mouse model. Histological assessments and transcriptional analyses revealed the accumulation of lipofuscin aggresomes and senescence-related transcripts (Cdkn1a, Cdkn2a, Pai-1 and Hmgb1) significantly increased with advancing age. Transcriptomic profiling and pathway analyses following RNA sequencing, revealed an upregulation of genes related to pro-inflammatory stress and cell-cycle inhibition, whereas genes involved in cell-cycle progression were downregulated; which could be indicative of senescent cell accumulation. The emergence of these senescence-related markers preceded the dramatic decline in primordial follicle reserve observed. Whole Genome Oxidative Bisulfite Sequencing (WGoxBS) found no genome-wide or genomic context-specific DNA methylation and hydroxymethylation changes with advancing age. These findings suggest that cellular senescence may contribute to ovarian aging, and thus, declines in ovarian follicular reserve. Cell-type-specific analyses across the reproductive lifespan are needed to fully elucidate the mechanisms that promote ovarian insufficiency.


Aging/pathology , Cellular Senescence , Ovarian Follicle/pathology , Ovarian Reserve , Ovary/pathology , Primary Ovarian Insufficiency/pathology , Age Factors , Aging/genetics , Aging/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cytokines/genetics , Cytokines/metabolism , DNA Methylation , Epigenesis, Genetic , Female , Gene Expression Profiling , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Ovarian Follicle/metabolism , Ovarian Follicle/physiopathology , Ovary/metabolism , Ovary/physiopathology , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/physiopathology , Transcriptome
7.
J Gerontol A Biol Sci Med Sci ; 76(5): 778-785, 2021 04 30.
Article En | MEDLINE | ID: mdl-32857104

Aging is the greatest risk factor for most chronic diseases. The somatotropic axis is one of the most conserved biological pathways that regulates aging across species. 17α-Estradiol (17α-E2), a diastereomer of 17ß-estradiol (17ß-E2), was recently found to elicit health benefits, including improved insulin sensitivity and extend longevity exclusively in male mice. Given that 17ß-E2 is known to modulate somatotropic signaling in females through actions in the pituitary and liver, we hypothesized that 17α-E2 may be modulating the somatotropic axis in males, thereby contributing to health benefits. Herein, we demonstrate that 17α-E2 increases hepatic insulin-like growth factor 1 (IGF1) production in male mice without inducing any changes in pulsatile growth hormone (GH) secretion. Using growth hormone receptor knockout (GHRKO) mice, we subsequently determined that the induction of hepatic IGF1 by 17α-E2 is dependent upon GH signaling in male mice, and that 17α-E2 elicits no effects on IGF1 production in female mice. We also determined that 17α-E2 failed to feminize the hepatic transcriptional profile in normal (N) male mice, as evidenced by a clear divergence between the sexes, regardless of treatment. Conversely, significant overlap in transcriptional profiles was observed between sexes in GHRKO mice, and this was unaffected by 17α-E2 treatment. Based on these findings, we propose that 17α-E2 acts as a pleiotropic pathway modulator in male mice by uncoupling IGF1 production from insulin sensitivity. In summary, 17α-E2 treatment upregulates IGF1 production in wild-type (and N) male mice in what appears to be a GH-dependent fashion, while no effects in female IGF1 production are observed following 17α-E2 treatment.


Estradiol/pharmacology , Estrogens/pharmacology , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Animals , Female , Gene Expression Profiling , Growth Hormone/metabolism , Insulin/blood , Insulin-Like Growth Factor I/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Sex Factors , Up-Regulation
8.
Elife ; 92020 12 08.
Article En | MEDLINE | ID: mdl-33289482

Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17ß-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.


Estradiol/physiology , Estrogen Receptor alpha/physiology , Longevity , Animals , Female , Gene Expression Regulation/physiology , Hypothalamus/metabolism , Hypothalamus/physiology , Insulin Resistance/physiology , Liver/metabolism , Liver/physiology , Longevity/physiology , Male , Mice , Mice, Knockout , Rats
9.
Exp Gerontol ; 142: 111113, 2020 12.
Article En | MEDLINE | ID: mdl-33065227

Menopause is a natural physiological process in older women that is associated with reduced estrogen production and results in increased risk for obesity, diabetes, and osteoporosis. 17α-estradiol (17α-E2) treatment in males, but not females, reverses several metabolic conditions associated with advancing age, highlighting sexually dimorphic actions on age-related pathologies. In this study we sought to determine if 17α-E2 could prevent ovariectomy (OVX)-mediated detriments on adiposity and bone parameters in females. Eight-week-old female C57BL/6J mice were subjected to SHAM or OVX surgery and received dietary 17α-E2 during a six-week intervention period. We observed that 17α-E2 prevented OVX-induced increases in body weight and adiposity. Similarly, uterine weight and luminal cell thickness were decreased by OVX and prevented by 17α-E2 treatment. Interestingly, 17α-E2 prevented OVX-induced declines in tibial metaphysis cancellous bone. And similarly, 17α-E2 improved bone density parameters in both tibia and femur cancellous bone, primarily in OVX mice. In contrast, to the effects on cancellous bone, cortical bone parameters were largely unaffected by OVX or 17α-E2. In the non-weight bearing lumbar vertebrae, OVX reduced trabecular thickness but not spacing, while 17α-E2 increased trabecular thickness and reduced spacing. Despite this, 17α-E2 did improve bone volume/tissue volume in lumbar vertebrae. Overall, we found that 17α-E2 prevented OVX-induced increases in adiposity and changes in bone mass and architecture, with minimal effects in SHAM-operated mice. We also observed that 17α-E2 rescued uterine tissue mass and lining morphology to control levels without inducing hypertrophy, suggesting that 17α-E2 could be considered as an adjunct to traditional hormone replacement therapies.


Bone Density , Estradiol , Aged , Animals , Estradiol/pharmacology , Estrogens , Female , Humans , Mice , Mice, Inbred C57BL , Obesity , Organ Size , Ovariectomy , Rats , Rats, Sprague-Dawley
10.
Sci Rep ; 10(1): 13672, 2020 08 13.
Article En | MEDLINE | ID: mdl-32792604

Macrophages play an essential role in host defense and display remarkable plasticity in switching between classically (pro-inflammatory-M1) and alternatively activated (anti-inflammatory-M2) phenotypes. The molecular mechanisms of macrophage polarization are not fully understood. Long non-coding RNAs (lncRNAs) with a length of > 200 nucleotides have been shown to play diverse roles in biological processes. Aberrant expression of lncRNAs is associated with a variety of pathophysiological conditions such as cancer, diabetes, cardiovascular, pulmonary diseases, and tissue fibrosis. In this study, we investigated the role of lncRNA FENDRR in human and mouse macrophage polarization. Human THP-1 monocytes were activated with phorbol-12-myristate-13-acetate (PMA) and differentiated into M1 macrophages with IFNγ or M2 macrophages with IL4. Real-time PCR analysis revealed that FENDRR was expressed 80-fold higher in M1 macrophages than that in M2 macrophages. Overexpression of FENDRR in PMA-activated THP-1 cells increased the IFNγ-induced expression of M1 markers, including IL1ß and TNFα at both mRNA and protein levels. Knockdown of FENDRR had an opposite effect. Similarly, FENDRR overexpression in primary mouse bone marrow-derived macrophages increased mRNA expression of M1 markers. FENDRR overexpression increased, while FENDRR knock-down decreased, the IFNγ-induced phosphorylation of STAT1 in PMA-activated THP-1 cells. Our studies suggest that FENDRR enhances IFNγ-induced M1 macrophage polarization via the STAT1 pathway.


Down-Regulation , Interferon-gamma/pharmacology , Monocytes/cytology , RNA, Long Noncoding/genetics , Animals , Cell Polarity , Down-Regulation/drug effects , Gene Knockdown Techniques , Humans , Macrophage Activation , Mice , Monocytes/metabolism , STAT1 Transcription Factor/metabolism , THP-1 Cells
11.
Am J Respir Cell Mol Biol ; 62(4): 440-453, 2020 04.
Article En | MEDLINE | ID: mdl-31697569

Abnormal activation of lung fibroblasts contributes to the initiation and progression of idiopathic pulmonary fibrosis (IPF). The objective of the present study was to investigate the role of fetal-lethal noncoding developmental regulatory RNA (FENDRR) in the activation of lung fibroblasts. Dysregulated long noncoding RNAs in IPF lungs were identified by next-generation sequencing analysis from the two online datasets. FENDRR expression in lung tissues from patients with IPF and mice with bleomycin-induced pulmonary fibrosis was determined by quantitative real-time PCR. IRP1 (iron-responsive element-binding protein 1), a protein partner of FENDRR, was identified by RNA pulldown-coupled mass spectrometric analysis and confirmed by RNA immunoprecipitation. The interaction region between FENDRR and IRP1 was determined by cross-linking immunoprecipitation. The in vivo role of FENDRR in pulmonary fibrosis was studied using adenovirus-mediated gene transfer in mice. The expression of FENDRR was downregulated in fibrotic human and mouse lungs as well as in primary lung fibroblasts isolated from bleomycin-treated mice. TGF-ß1 (transforming growth factor-ß1)-SMAD3 signaling inhibited FENDRR expression in lung fibroblasts. FENDRR was preferentially localized in the cytoplasm of adult lung fibroblasts and bound IRP1, suggesting its role in iron metabolism. FENDRR reduced pulmonary fibrosis by inhibiting fibroblast activation by reducing iron concentration and acting as a competing endogenous RNA of the profibrotic microRNA-214. Adenovirus-mediated FENDRR gene transfer in the mouse lung attenuated bleomycin-induced lung fibrosis and improved lung function. Our data suggest that FENDRR is an antifibrotic long noncoding RNA and a potential therapeutic target for pulmonary fibrosis.


Idiopathic Pulmonary Fibrosis/genetics , RNA, Long Noncoding/genetics , Animals , Bleomycin/pharmacology , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lung/drug effects , Lung/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Smad3 Protein/genetics , Transforming Growth Factor beta1/genetics
12.
RNA Biol ; 16(3): 340-353, 2019 03.
Article En | MEDLINE | ID: mdl-30669933

Long non-coding RNAs (lncRNAs) are a new arm of gene regulatory mechanism as discovered by sequencing techniques and follow-up functional studies. There are only few studies on lncRNAs as related to gene expression regulation and anti-viral activity during influenza virus infection. We sought to identify and characterize lncRNAs involved in influenza virus replication. Using RNA sequencing analysis, we found that 1,912 lncRNAs were significantly changed in human lung epithelial A549 cells infected with influenza A/Puerto Rico/8/34. Gene ontology analysis on neighboring genes of these lncRNAs revealed that the genes involved in type I interferon signaling and cellular response were highly enriched. Seven selected up-regulated lncRNAs (AC015849.2, RP-1-7H24.1, PSMB8-AS1, CTD-2639E6.9, PSOR1C3, AC007283.5 and RP11-670E13.5) were verified by real-time PCR. These lncRNAs were also induced by other two influenza H1N1 virus strains (A/WSN/1933 and A/Oklahoma/3052/09) and interferon ß1. Repression of PSMB8 antisense RNA 1 (PSMB8-AS1) using CRISPR interference reduced viral mRNA and protein levels as well as the release of progeny influenza virus particles. Our study suggests that lncRNA PSMB8-AS1 could be a new host factor target for developing antiviral therapy against influenza virus infection.


Host-Pathogen Interactions , Influenza A virus/physiology , Influenza, Human/genetics , Influenza, Human/virology , Proteasome Endopeptidase Complex/genetics , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , Virus Replication/genetics , Animals , Cell Line , Computational Biology/methods , Disease Resistance/genetics , Gene Expression Profiling , Gene Expression Regulation, Viral , Gene Ontology , Host-Pathogen Interactions/genetics , Humans , Transcriptome
13.
Sci Rep ; 8(1): 2709, 2018 02 09.
Article En | MEDLINE | ID: mdl-29426911

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3-6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Fibroblasts/pathology , Hypoxia/pathology , Idiopathic Pulmonary Fibrosis/pathology , Lung/blood supply , NFATC Transcription Factors/metabolism , Adult , Aged , Cell Cycle , Cell Proliferation , Cells, Cultured , Cyclin A1/metabolism , Cyclin D1/metabolism , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Female , Fibroblasts/metabolism , Humans , Hypoxia/metabolism , Lung/metabolism , Lung/pathology , Male , Middle Aged , Oncogene Proteins/metabolism
...