Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 51(5): 3184-3194, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38456608

RESUMEN

BACKGROUND: Electromagnetic tracking (EMT) systems have proven to be a valuable source of information regarding the location and geometry of applicators in patients undergoing brachytherapy (BT). As an important element of an enhanced and individualized pre-treatment verification, EMT can play a pivotal role in detecting treatment errors and uncertainties to increase patient safety. PURPOSE: The purpose of this study is two-fold: to design, develop and test a dedicated measurement protocol for the use of EMT-enabled afterloaders in BT and to collect and compare the data acquired from three different radiation oncology centers in different clinical environments. METHODS: A novel quality assurance (QA) phantom composed of a scaffold with supports to fix the field generator, different BT applicators, and reference sensors (sensor verification tools) was used to assess the precision (jitter error) and accuracy (relative distance errors and target registration error) of the EMT sensor integrated into an afterloader prototype. Measurements were repeated in different environments where EMT measurements are likely to be performed, namely an electromagnetically clean laboratory, a BT suite, an operating room, and, if available, a CT suite and an MRI suite dedicated to BT. RESULTS: The mean positional jitter was consistently under 0.1 mm across all measurement points, with a slight trend of increased jitter at greater distances from the field generator. The mean variability of sensor positioning in the tested tandem and ring gynecological applicator was also below 0.1 mm. The tracking accuracy close to the center of the measurement volume was higher than at its edges. The relative distance error at the center was 0.2-0.3 mm with maximum values reaching 1.2-1.8 mm, but up to 5.5 mm for measurement points close to the edges. In general, similar accuracy results were obtained in the clinical environments and in all investigated institutions (median distance error 0.1-0.4 mm, maximum error 1.0-2.0 mm), however, errors were found to be larger in the CT suite (median distance error up to 1.0 mm, maximum error up to 3.6 mm). CONCLUSION: The presented quality assessment protocol for EMT systems in BT has demonstrated that EMT offers a high-accuracy determination of the applicator/implant geometry even in clinical environments. In addition to that, it has provided valuable insights into the performance of EMT-enabled afterloaders across different radiation oncology centers.


Asunto(s)
Braquiterapia , Fenómenos Electromagnéticos , Garantía de la Calidad de Atención de Salud , Braquiterapia/instrumentación , Humanos , Fantasmas de Imagen , Control de Calidad
2.
Med Phys ; 50(9): 5772-5783, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37458615

RESUMEN

BACKGROUND: Electromagnetic tracking (EMT) is a promising technology that holds great potential to advance patient-specific pre-treatment verification in interstitial brachytherapy (iBT). It allows easy determination of the implant geometry without line-of-sight restrictions and without dose exposure to the patient. What it cannot provide, however, is a link to anatomical landmarks, such as the exit points of catheters or needles on the skin surface. These landmarks are required for the registration of EMT data with other imaging modalities and for the detection of treatment errors such as incorrect indexer lengths, and catheter or needle shifts. PURPOSE: To develop an easily applicable method to detect reference points in the positional data of the trajectory of an EMT sensor, specifically the exit points of catheters in breast iBT, and to apply the approach to pre-treatment error detection. METHODS: Small metal objects were attached to catheter fixation buttons that rest against the breast surface to intentionally induce a local, spatially limited perturbation of the magnetic field on which the working principle of EMT relies. This perturbation can be sensed by the EMT sensor as it passes by, allowing it to localize the metal object and thus the catheter exit point. For the proof-of-concept, different small metal objects (magnets, washers, and bushes) and EMT sensor drive speeds were used to find the optimal parameters. The approach was then applied to treatment error detection and validated in-vitro on a phantom. Lastly, the in-vivo feasibility of the approach was tested on a patient cohort of four patients to assess the impact on the clinical workflow. RESULTS: All investigated metal objects were able to measurably perturb the magnetic field, which resulted in missing sensor readings, that is two data gaps, one for the sensor moving towards the tip end and one when retracting from there. The size of the resulting data gaps varied depending on the choice of gap points used for calculation of the gap size; it was found that the start points of the gaps in both directions showed the smallest variability. The median size of data gaps was ⩽8 mm for all tested materials and sensor drive speeds. The variability of the determined object position was ⩽0.5 mm at a speed of 1.0 cm/s and ⩽0.7 mm at 2.5 cm/s, with an increase up to 2.3 mm at 5.0 cm/s. The in-vitro validation of the error detection yielded a 100% detection rate for catheter shifts of ≥2.2 mm. All simulated wrong indexer lengths were correctly identified. The in-vivo feasibility assessment showed that the metal objects did not interfere with the routine clinical workflow. CONCLUSIONS: The developed approach was able to successfully detect reference points in EMT data, which can be used for registration to other imaging modalities, but also for treatment error detection. It can thus advance the automation of patient-specific, pre-treatment quality assurance in iBT.


Asunto(s)
Braquiterapia , Humanos , Dosificación Radioterapéutica , Braquiterapia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Catéteres , Fantasmas de Imagen , Fenómenos Electromagnéticos
3.
Radiother Oncol ; 176: 172-178, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36181920

RESUMEN

BACKGROUND AND PURPOSE: To develop a method for automatic reconstruction of catheter implants in interstitial brachytherapy (iBT) of the breast by means of electromagnetic tracking (EMT) with the goal of making treatment planning as time-effective and accurate as possible. MATERIALS AND METHODS: The implant geometry of 64 patients was recorded using an afterloader prototype with EMT functionality immediately after the planning CT. EMT data were transferred to the CT image space by rigidly registering the catheter fixation buttons as landmarks. To further improve reconstruction accuracy, the EMT reconstruction points were used as starting points to define small regions of interest (ROI) in the CT image. Within these ROIs, the catheter track was segmented in the CT using image processing operations such as thresholding and blob detection, thus refining the reconstruction. The perpendicular distance between the refined EMT implant reconstruction points and the manually reconstructed catheters by an experienced treatment planner was calculated as a measure of their geometric agreement. RESULTS: Geometrically, the refined EMT based implant reconstruction shows excellent agreement with the manual reconstruction. The median distance across all patients is 0.25 mm and the 95th percentile is 1 mm. Refinement takes approximately 0.5 s per reconstruction point and typically does not exceed 3 min per implant at no user interaction. CONCLUSION: The refined EMT based implant reconstruction proved to be extremely accurate and fast compared to manual reconstruction. The presented procedure can in principle be easily transferred to clinical routine and therefore has enormous potential to provide significant time savings in iBT treatment planning whilst improving reconstruction accuracy.


Asunto(s)
Braquiterapia , Humanos , Braquiterapia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Fenómenos Electromagnéticos , Catéteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA