Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(26): 10543-10550, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38875705

RESUMEN

The use of online mass spectrometry for detecting volatile organic compounds (VOCs) has proven to be a powerful technique, allowing for real-time analysis of many chemical and biochemical processes. Unfortunately, online mass spectrometry has had limited application due to high instrument costs and limited availability. Here, we detail the design, construction, and performance characteristics of a custom ion-molecule reactor retrofitted to a commonly used single quadrupole mass spectrometer to operate as an online chemical ionization mass spectrometer (CIMS). This low-cost modified CIMS is capable of limits of detection below 10 parts per trillion for select VOCs including dimethyl sulfide, dimethylamine, and trimethylamine.

2.
Environ Sci Process Impacts ; 24(10): 1923-1933, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36169554

RESUMEN

Marine chromophoric dissolved organic matter (m-CDOM) mediates many vital photochemical processes at the ocean's surface. Isolating m-CDOM within the chemical complexity of marine dissolved organic matter has remained an analytical challenge. The SeaSCAPE campaign, a large-scale mesocosm experiment, provided a unique opportunity to probe the in situ production of m-CDOM across phytoplankton and microbial blooms. Results from mass spectrometry coupled with UV-VIS spectroscopy reveal production of a chemodiverse set of compounds well-correlated with increases in absorbance after a bacterial bloom, indicative of autochthonous m-CDOM production. Notably, many of the absorbing compounds were found to be enriched in nitrogen, which may be essential to chromophore function. From these results, quinoids, porphyrins, flavones, and amide-like compounds were identified via structural analysis and may serve as important photosensitizers in the marine boundary layer. Overall, this study demonstrates a step forward in identifying and characterizing m-CDOM using temporal mesocosm data and integrated UV-VIS spectroscopy and mass spectrometry analyses.


Asunto(s)
Flavonas , Porfirinas , Materia Orgánica Disuelta , Fármacos Fotosensibilizantes , Nitrógeno , Amidas , Espectrometría de Fluorescencia/métodos
3.
Environ Sci Process Impacts ; 24(2): 290-315, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35048927

RESUMEN

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.


Asunto(s)
Atmósfera , Agua de Mar , Aerosoles/química , Atmósfera/química , Océanos y Mares , Fitoplancton , Agua de Mar/química
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599100

RESUMEN

Algae cultivation in open raceway ponds is considered the most economical method for photosynthetically producing biomass for biofuels, chemical feedstocks, and other high-value products. One of the primary challenges for open ponds is diminished biomass yields due to attack by grazers, competitors, and infectious organisms. Higher-frequency observations are needed for detection of grazer infections, which can rapidly reduce biomass levels. In this study, real-time measurements were performed using chemical ionization mass spectrometry (CIMS) to monitor the impact of grazer infections on cyanobacterial cultures. Numerous volatile gases were produced during healthy growth periods from freshwater Synechococcus elongatus Pasteur Culture Collection (PCC) 7942, with 6-methyl-5-hepten-2-one serving as a unique metabolic indicator of exponential growth. Following the introduction of a Tetrahymena ciliate grazer, the concentrations of multiple volatile species were observed to change after a latent period as short as 18 h. Nitrogenous gases, including ammonia and pyrroline, were found to be reliable indicators of grazing. Detection of grazing by CIMS showed indicators of infections much sooner than traditional methods, microscopy, and continuous fluorescence, which did not detect changes until 37 to 76 h after CIMS detection. CIMS analysis of gases produced by PCC 7942 further shows a complex temporal array of biomass-dependent volatile gas production, which demonstrates the potential for using volatile gas analysis as a diagnostic for grazer infections. Overall, these results show promise for the use of continuous volatile metabolite monitoring for the detection of grazing in algal monocultures, potentially reducing current grazing-induced biomass losses, which could save hundreds of millions of dollars.


Asunto(s)
Biocombustibles/análisis , Cianobacterias/química , Gases/química , Biomasa , Estanques
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33376210

RESUMEN

Aerosols impact climate, human health, and the chemistry of the atmosphere, and aerosol pH plays a major role in the physicochemical properties of the aerosol. However, there remains uncertainty as to whether aerosols are acidic, neutral, or basic. In this research, we show that the pH of freshly emitted (nascent) sea spray aerosols is significantly lower than that of sea water (approximately four pH units, with pH being a log scale value) and that smaller aerosol particles below 1 µm in diameter have pH values that are even lower. These measurements of nascent sea spray aerosol pH, performed in a unique ocean-atmosphere facility, provide convincing data to show that acidification occurs "across the interface" within minutes, when aerosols formed from ocean surface waters become airborne. We also show there is a correlation between aerosol acidity and dissolved carbon dioxide but no correlation with marine biology within the seawater. We discuss the mechanisms and contributing factors to this acidity and its implications on atmospheric chemistry.


Asunto(s)
Aerosoles/química , Agua de Mar/química , Aire , Atmósfera/química , Ambiente , Humanos , Concentración de Iones de Hidrógeno , Océanos y Mares , Fitoplancton , Agua de Mar/análisis
6.
Acc Chem Res ; 53(11): 2510-2520, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33086794

RESUMEN

Ocean-atmosphere interactions control the composition of the atmosphere, hydrological cycle, and temperature of our planet and affect human and ecosystem health. Our understanding of the impact of ocean emissions on atmospheric chemistry and climate is limited relative to terrestrial systems, despite the fact that oceans cover the majority (71%) of the Earth. As a result, the impact of marine aerosols on clouds represents one of the largest uncertainties in our understanding of climate, which is limiting our ability to accurately predict the future temperatures of our planet. The emission of gases and particles from the ocean surface constitutes an important chemical link between the ocean and atmosphere and is mediated by marine biological, physical, and chemical processes. It is challenging to isolate the role of biological ocean processes on atmospheric chemistry in the real world, which contains a mixture of terrestrial and anthropogenic emissions. One decade ago, the NSF Center for Aerosol Impacts on Chemistry of the Environment (CAICE) took a unique ocean-in-the-laboratory approach to study the factors controlling the chemical composition of marine aerosols and their effects on clouds and climate. CAICE studies have demonstrated that the complex interplay of phytoplankton, bacteria, and viruses exerts significant control over sea spray aerosol composition and the production of volatile organic compounds. In addition, CAICE experiments have explored the physical production mechanisms and their impact on the properties of marine cloud condensation nuclei and ice nucleating particles, thus shedding light on connections between the oceans and cloud formation. As these ocean-in-the-laboratory experiments become more sophisticated, they allow for further exploration of the complexity of the processes that control atmospheric emissions from the ocean, as well as incorporating the effects of atmospheric aging and secondary oxidation processes. In the face of unprecedented global climate change, these results provide key insights into how our oceans and atmosphere are responding to human-induced changes to our planet.This Account presents results from a decade of research by chemists in the NSF Center for Aerosol Impacts on Chemistry of the Environment. The mission of CAICE involves taking a multidisciplinary approach to transform the ability to accurately predict the impact of marine aerosols on our environment by bringing the full real-world chemical complexity of the ocean and atmosphere into the laboratory. Toward this end, CAICE has successfully advanced the study of the ocean-atmosphere system under controlled laboratory settings through the stepwise simulation of physical production mechanisms and incorporation of marine microorganisms, building to systems that replicate real-world chemical complexity. This powerful approach has already made substantial progress in advancing our understanding of how ocean biology and physical processes affect the composition of nascent sea spray aerosol (SSA), as well as yielded insights that help explain longstanding discrepancies in field observations in the marine environment. CAICE research is now using laboratory studies to assess how real-world complexity, such as warming temperatures, ocean acidification, wind speed, biology, and anthropogenic perturbations, impacts the evolution of sea spray aerosol properties, as well as shapes the composition of the marine atmosphere.

8.
Anal Chem ; 92(13): 8845-8851, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32441094

RESUMEN

Typical ionization techniques used for mass spectrometry (MS) analysis face challenges when trying to analyze organic species in a high-salt environment. Here, we present results using a recently developed ionization source, liquid sampling-atmospheric pressure glow discharge (LS-APGD), for marine-relevant salt-containing organic samples. Using two representative sample types, a triglyceride mixture and dissolved organic matter, this method is compared to traditional electrospray ionization (ESI) under saline and neat conditions. LS-APGD produced equal or higher (15%+) ion intensities than those of ESI for both salt-containing and neat samples, although important differences linked with adduct formation in high-salt conditions explain the molecular species observed. For all sample types, LS-APGD observed a higher diversity of molecules under optimized settings (0.25 mm electrode spacing at 20 mA) compared to traditional ESI. Furthermore, because the LS-APGD source ionizes molecular species in a ∼1 mm3 volume plasma using a low-power source, there is the potential for this method to be applied in field studies, eliminating desalting procedures, which can be time-consuming and nonideal for low-concentration species.

9.
J Org Chem ; 79(13): 6269-78, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24931463

RESUMEN

Intramolecular halogen bonds between aryl halide donors and suitable acceptors, such as carbonyl or quinolinyl groups, held in proximity by 1,2-aryldiyne linkers, provide triangular structures in the solid state. Aryldiyne linkers provide a nearly ideal template for intramolecular halogen bonding as minor deviations from alkyne linearity can accommodate a variety of halogen bonding interactions, including O···Cl, O···Br, O···I, N···Br, and N···I. Halogen bond lengths for these units, observed by single crystal X-ray crystallography, range from 2.75 to 2.97 Å. Internal bond angles of the semirigid bridge between halogen bond donor and acceptor are responsive to changes in the identity of the halogen, the identity of the acceptor, and the electronic environment around the halogen, with the triangles retaining almost perfect co-planarity in even the most strained systems. Consistency between experimental results and structures predicted by M06-2X/6-31G* calculations demonstrates the efficacy of this computational method for modeling halogen-bonded structures of this type.

10.
Dalton Trans ; 42(4): 948-58, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23108460

RESUMEN

Two conjugated systems that can be constrained to planarity via metal coordination have been generated and their metal complexes studied. The potential for these architectures to be incorporated into metal-sensing arylene ethynylene/vinylene oligomers and polymers was probed by verifying that these ligands (1) bind strongly to Ag(I) and Pd(II) cations, and (2) that this event leads to complexes that are planar. Single crystal structures confirm that introduction of Ag(I) or Pd(II) cations enforces planarity in the newly formed macrocycles. Likewise, (1)H-NMR titration studies reveal stoichiometric binding of Pd(II) and strong binding of Ag(I) (K(a (Ligand 1)) = 1.3 × 10(2) M(-1); K(a (Ligand 2)) = 5.4 × 10(2) M(-1)) for each conjugated ligand.

11.
J Org Chem ; 77(5): 2571-7, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22296310

RESUMEN

The effective conjugation of ortho and ortho-alt-para-arylene ethynylenes, with appropriately positioned pyridine and pyrazine heterocycles, increases upon binding to Ag(I) and Pd(II) cations. Significant bathochromic shifts in the electronic spectra, witnessed upon introduction of these metal bridges, are consistent with enhanced electron delocalization in the unsaturated backbone. Control studies suggest that this electronic behavior is attributable exclusively (in the case of Ag(I)) or partially (in the case of Pd(II)) to conformational restrictions of the conjugated backbones.


Asunto(s)
Alquinos/química , Compuestos Organometálicos/síntesis química , Paladio/química , Plata/química , Estructura Molecular , Compuestos Organometálicos/química , Pirazinas/química , Piridinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA