Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
Cell Death Dis ; 15(4): 249, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582872

Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.


Diazepam Binding Inhibitor , gamma-Aminobutyric Acid , Animals , Mice , Diazepam Binding Inhibitor/pharmacology
2.
Leukemia ; 38(5): 1019-1031, 2024 May.
Article En | MEDLINE | ID: mdl-38627586

The hypomethylating agent 5-azacytidine (AZA) is the first-line treatment for AML patients unfit for intensive chemotherapy. The effect of AZA results in part from T-cell cytotoxic responses against MHC-I-associated peptides (MAPs) deriving from hypermethylated genomic regions such as cancer-testis antigens (CTAs), or endogenous retroelements (EREs). However, evidence supporting higher ERE MAPs presentation after AZA treatment is lacking. Therefore, using proteogenomics, we examined the impact of AZA on the repertoire of MAPs and their source transcripts. AZA-treated AML upregulated both CTA and ERE transcripts, but only CTA MAPs were presented at greater levels. Upregulated ERE transcripts triggered innate immune responses against double-stranded RNAs but were degraded by autophagy, and not processed into MAPs. Autophagy resulted from the formation of protein aggregates caused by AZA-dependent inhibition of DNMT2. Autophagy inhibition had an additive effect with AZA on AML cell proliferation and survival, increased ERE levels, increased pro-inflammatory responses, and generated immunogenic tumor-specific ERE-derived MAPs. Finally, autophagy was associated with a lower abundance of CD8+ T-cell markers in AML patients expressing high levels of EREs. This work demonstrates that AZA-induced EREs are degraded by autophagy and shows that inhibiting autophagy can improve the immune recognition of AML blasts in treated patients.


Antimetabolites, Antineoplastic , Autophagy , Azacitidine , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Azacitidine/pharmacology , Autophagy/drug effects , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , DNA Methylation/drug effects , Cell Proliferation , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology
4.
Methods Cell Biol ; 181: 151-160, 2024.
Article En | MEDLINE | ID: mdl-38302236

Cellular senescence is a molecular process that is activated in response to a large variety of distinct stress signals. Mechanistically, cellular senescence is characterized by an arrest in cell cycle accompanied by phenotypic adaptations and physiological alterations including changes in the secretory profile of senescent cells termed the senescence-associated secretory phenotype (SASP). Here we describe a detailed, automation- compatible method for the detection of senescence-associated beta galactosidase (SA-ß-gal) activity as a hallmark of cellular senescence using a conventional fluorescent microscope equipped with a transmitted light module. Moreover, we outline a protocol for the automated analysis of cellular senescence using convolutional neural networks (CNNs) and mathematical morphology. In sum, we provide a toolset for the high throughput assessment of cellular senescence based on light microscopy and automated image analysis.


Cellular Senescence , Cellular Senescence/physiology , Cell Cycle , Cell Division
5.
Cell Death Dis ; 14(11): 758, 2023 11 22.
Article En | MEDLINE | ID: mdl-37989732

Autophagy inducers can prevent cardiovascular aging and age-associated diseases including atherosclerosis. Therefore, we hypothesized that autophagy-inducing compounds that act on atherosclerosis-relevant cells might have a protective role in the development of atherosclerosis. Here we identified 3,4-dimethoxychalcone (3,4-DC) as an inducer of autophagy in several cell lines from endothelial, myocardial and myeloid/macrophagic origin, as demonstrated by the aggregation of the autophagosome marker GFP-LC3 in the cytoplasm of cells, as well as the downregulation of its nuclear pool indicative of autophagic flux. In this respect, 3,4-DC showed a broader autophagy-inducing activity than another chalcone (4,4- dimethoxychalcone), spermidine and triethylene tetramine. Thus, we characterized the potential antiatherogenic activity of 3,4-DC in two different mouse models, namely, (i) neointima formation with smooth muscle expansion of vein segments grafted to the carotid artery and (ii) genetically predisposed ApoE-/- mice fed an atherogenic diet. In the vein graft model, local application of 3,4-DC was able to maintain the lumen of vessels and to reduce neointima lesions. In the diet-induced model, intraperitoneal injections of 3,4-DC significantly reduced the number of atherosclerotic lesions in the aorta. In conclusion, 3,4-DC stands out as an autophagy inducer with potent antiatherogenic activity.


Atherosclerosis , Neointima , Mice , Animals , Neointima/drug therapy , Neointima/pathology , Hyperplasia/pathology , Atherosclerosis/pathology , Aorta/pathology , Disease Models, Animal , Autophagy , Mice, Inbred C57BL
6.
Oncoimmunology ; 12(1): 2237354, 2023.
Article En | MEDLINE | ID: mdl-37492227

Formyl peptide receptor-1 (FPR1) is a pattern recognition receptor that is mostly expressed by myeloid cells. In patients with colorectal cancer (CRC), a loss-of-function polymorphism (rs867228) in the gene coding for FPR1 has been associated with reduced responses to chemotherapy or chemoradiotherapy. Moreover, rs867228 is associated with accelerated esophageal and colorectal carcinogenesis. Here, we show that dendritic cells from Fpr1-/- mice exhibit reduced migration in response to chemotherapy-treated CRC cells. Moreover, Fpr1-/- mice are particularly susceptible to chronic ulcerative colitis and colorectal oncogenesis induced by the mutagen azoxymethane followed by oral dextran sodium sulfate, a detergent that induces colitis. These experiments were performed after initial co-housing of Fpr1-/- mice and wild-type controls, precluding major Fpr1-driven differences in the microbiota. Pharmacological inhibition of Fpr1 by cyclosporin H also tended to increase intestinal oncogenesis in mice bearing the ApcMin mutation, and this effect was reversed by the anti-inflammatory drug sulindac. We conclude that defective FPR1 signaling favors intestinal tumorigenesis through the modulation of the innate inflammatory/immune response.


Colitis , Colorectal Neoplasms , Animals , Mice , Carcinogenesis/genetics , Colitis/chemically induced , Colitis/genetics , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Receptors, Formyl Peptide/genetics , Signal Transduction
8.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Article En | MEDLINE | ID: mdl-36191214

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Diazepam Binding Inhibitor , Receptors, GABA-A , Animals , Mice , Acetaminophen , Antibodies, Monoclonal/metabolism , Antioxidants , Autoantibodies/metabolism , Autophagy , Carbon Tetrachloride , Carrier Proteins/genetics , Choline , Coenzyme A/metabolism , Concanavalin A/metabolism , Diazepam , Diazepam Binding Inhibitor/metabolism , Fatty Acids/metabolism , Fibrosis , Inflammation , Methionine
9.
Methods Cell Biol ; 172: 135-143, 2022.
Article En | MEDLINE | ID: mdl-36064220

The radiochemotherapy- or chemotherapy-induced stimulation of immunogenic cell death (ICD) affecting malignant cells ignites antitumor immune responses that are clinically relevant as they allow to achieve durable responses beyond treatment discontinuation. The mechanistic exploration of ICD and the discovery of agents and interventions that are endowed with the capacity to elicit ICD is of the utmost importance. Here, we describe an assay for the assessment of type I interferon (IFN) production, which is one of the salient features of ICD. Biosensor cells that express GFP under the control of the IFN-inducible MX dynamin like GTPase 1 (MX1) gene promoter are employed, and the fluorescent signal is assessed by automated microscopy. The described workflow is automation-friendly, rendering it compatible with high-throughput screening (HTS) for drug discovery.


Interferon Type I , Drug Discovery , High-Throughput Screening Assays , Immunogenic Cell Death
10.
Methods Cell Biol ; 172: 67-82, 2022.
Article En | MEDLINE | ID: mdl-36064227

Anticancer drugs that suppress DNA-to-RNA transcription are particularly efficient in stimulating immunogenic cell death and hence eradicate malignant cells in a way that they will ignite an antitumor immune response. This is therapeutically relevant as it allows treatment response to last beyond drug discontinuation. For this reason, it is important to measure transcription inhibition in a precise fashion. Here, we detail two complementary assays for the assessment of transcription inhibition, one that detects the physical separation of fibrillarin and nucleolin by two-color immunofluorescence and another that measures the diminution of incorporated 5-ethynyl uridine (EU) into RNA, as revealed by click chemistry and the per-cell-intensity of a fluorescent signal.


Immunogenic Cell Death , RNA , Click Chemistry , RNA/genetics
11.
Cancer Discov ; 12(10): 2280-2307, 2022 10 05.
Article En | MEDLINE | ID: mdl-35929803

Biomarkers guiding the neoadjuvant use of immune-checkpoint blockers (ICB) are needed for patients with localized muscle-invasive bladder cancers (MIBC). Profiling tumor and blood samples, we found that follicular helper CD4+ T cells (TFH) are among the best therapeutic targets of pembrolizumab correlating with progression-free survival. TFH were associated with tumoral CD8 and PD-L1 expression at baseline and the induction of tertiary lymphoid structures after pembrolizumab. Blood central memory TFH accumulated in tumors where they produce CXCL13, a chemokine found in the plasma of responders only. IgG4+CD38+ TFH residing in bladder tissues correlated with clinical benefit. Finally, TFH and IgG directed against urothelium-invasive Escherichia coli dictated clinical responses to pembrolizumab in three independent cohorts. The links between tumor infection and success of ICB immunomodulation should be prospectively assessed at a larger scale. SIGNIFICANCE: In patients with bladder cancer treated with neoadjuvant pembrolizumab, E. coli-specific CXCL13 producing TFH and IgG constitute biomarkers that predict clinical benefit. Beyond its role as a biomarker, such immune responses against E. coli might be harnessed for future therapeutic strategies. This article is highlighted in the In This Issue feature, p. 2221.


Urinary Bladder Neoplasms , B7-H1 Antigen , Chemokine CXCL13 , Escherichia coli , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunoglobulin G , Muscles , Neoadjuvant Therapy , Programmed Cell Death 1 Receptor , T-Lymphocytes, Helper-Inducer , Treatment Outcome , Urinary Bladder Neoplasms/drug therapy
12.
J Immunother Cancer ; 10(6)2022 06.
Article En | MEDLINE | ID: mdl-35772809

BACKGROUND: High activity of poly(ADP-ribose) polymerase-1 (PARP1) in non-small cell lung cancer (NSCLC) cells leads to an increase in immunohistochemically detectable PAR, correlating with poor prognosis in patients with NSCLC, as well as reduced tumor infiltration by cytotoxic T lymphocytes (CTLs). Intrigued by this observation, we decided to determine whether PARP1 activity in NSCLC cells may cause an alteration of anticancer immunosurveillance. METHODS: Continuous culture of mouse NSCLC cells in the presence of cisplatin led to the generation of cisplatin-resistant PARhigh clones. As compared with their parental controls, such PARhigh cells formed tumors that were less infiltrated by CTLs when they were injected into immunocompetent mice, suggesting a causative link between high PARP1 activity and compromised immunosurveillance. To confirm this cause-and-effect relationship, we used CRISPR/Cas9 technology to knock out PARP1 in two PARhigh NSCLC mouse cell lines (Lewis lung cancer [LLC] and tissue culture number one [TC1]), showing that the removal of PARP1 indeed restored cisplatin-induced cell death responses. RESULTS: PARP1 knockout (PARP1KO) cells became largely resistant to the PARP inhibitor niraparib, meaning that they exhibited less cell death induction, reduced DNA damage response, attenuated metabolic shifts and no induction of PD-L1 and MHC class-I molecules that may affect their immunogenicity. PARhigh tumors implanted in mice responded to niraparib irrespective of the presence or absence of T lymphocytes, suggesting that cancer cell-autonomous effects of niraparib dominate over its possible immunomodulatory action. While PARhigh NSCLC mouse cell lines proliferated similarly in immunocompetent and T cell-deficient mice, PARP1KO cells were strongly affected by the presence of T cells. PARP1KO LLC tumors grew more quickly in immunodeficient than in immunocompetent mice, and PARP1KO TC1 cells could only form tumors in T cell-deficient mice, not in immunocompetent controls. Importantly, as compared with PARhigh controls, the PARP1KO LLC tumors exhibited signs of T cell activation in the immune infiltrate such as higher inducible costimulator (ICOS) expression and lower PD-1 expression on CTLs. CONCLUSIONS: These results prove at the genetic level that PARP1 activity within malignant cells modulates the tumor microenvironment.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Monitoring, Immunologic , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Tumor Microenvironment
13.
J Immunother Cancer ; 10(4)2022 04.
Article En | MEDLINE | ID: mdl-35483744

BACKGROUND: Retrospective clinical trials reported a reduced local relapse rate, as well as improved overall survival after injection of local anesthetics during cancer surgery. Here, we investigated the anticancer effects of six local anesthetics used in clinical practice. RESULTS: In vitro, local anesthetics induced signs of cancer cell stress including inhibition of oxidative phosphorylation, and induction of autophagy as well as endoplasmic reticulum (ER) stress characterized by the splicing of X-box binding protein 1 (XBP1s) mRNA, cleavage of activating transcription factor 6 (ATF6), phosphorylation of eIF2α and subsequent upregulation of activating transcription factor 4 (ATF4). Both eIF2α phosphorylation and autophagy required the ER stress-relevant eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, best known as PERK). Local anesthetics also activated two hallmarks of immunogenic cell death, namely, the release of ATP and high-mobility group box 1 protein (HMGB1), yet failed to cause the translocation of calreticulin (CALR) from the ER to the plasma membrane. In vivo, locally injected anesthetics decreased tumor growth and improved survival in several models of tumors established in immunocompetent mice. Systemic immunotherapy with PD-1 blockade or intratumoral injection of recombinant CALR protein, increased the antitumor effects of local anesthetics. Local anesthetics failed to induce antitumor effects in immunodeficient mice or against cancers unable to activate ER stress or autophagy due to the knockout of EIF2AK3/PERK or ATG5, respectively. Uncoupling agents that inhibit oxidative phosphorylation and induce autophagy and ER stress mimicked the immune-dependent antitumor effects of local anesthetics. CONCLUSION: Altogether, these results indicate that local anesthetics induce a therapeutically relevant pattern of immunogenic stress responses in cancer cells.


Anesthetics, Local , Neoplasms , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Anesthetics, Local/metabolism , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Humans , Mice , Neoplasms/pathology , Retrospective Studies
14.
Oncoimmunology ; 11(1): 2037216, 2022.
Article En | MEDLINE | ID: mdl-35154909

Antibody-drug conjugates (ADCs) are used to target cancer cells by means of antibodies directed to tumor-associated antigens, causing the incorporation of a cytotoxic payload into target cells. Here, we characterized the mode of action of ADC costing of a TWEAKR-specific monoclonal antibody conjugated to a small molecule kinesin spindle protein (KSP) inhibitor (KSPi). These TWEAKR-KSPi-ADCs showed strong efficacy in a TWEAKR expressing CT26 colon cancer model in mice. TWEAKR-KSPi-ADCs controlled the growth of CT26 colon cancers in immunodeficient as well as in immunocompetent mice. However, when treated with suboptimal doses, TWEAKR-KSPi-ADCs were still active in immunocompetent but not in immunodeficient mice, indicating that TWEAKR-KSPi-ADCs act - in addition to the cytotoxic mode of action - through an immunological mechanism. Indeed, in vitro experiments performed with a cell-permeable small molecule KSPi closely related to the active payload released from the TWEAKR-KSPi-ADCs revealed that KSPi was capable of stimulating several hallmarks of immunogenic cell death (ICD) on three different human cancer cell lines: cellular release of adenosine triphosphate (ATP) and high mobility group B1 protein (HMGB1), exposure of calreticulin on the cell surface as well as a transcriptional type-I interferon response. Further, in vivo experiments confirmed that treatment with TWEAKR-KSPi-ADCs activated immune responses via enhancing the infiltration of CD4+ and CD8+ T lymphocytes in tumors and the local production of interferon-γ, interleukin-2, and tumor necrosis factor-α. In conclusion, the antineoplastic effects of TWEAKR-KSPi-ADCs can partly be attributed to its ICD-stimulatory properties.


Antineoplastic Agents , Immunoconjugates , Neoplasms , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , Immunoconjugates/metabolism , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Kinesins , Mice , Neoplasms/drug therapy , TWEAK Receptor
15.
Sci Adv ; 7(46): eabe5469, 2021 Nov 12.
Article En | MEDLINE | ID: mdl-34767445

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.

16.
Cell Death Dis ; 12(11): 978, 2021 10 21.
Article En | MEDLINE | ID: mdl-34675191

Colorectal cancers (CRC) can be classified into four consensus molecular subtypes (CMS), among which CMS1 has the best prognosis, contrasting with CMS4 that has the worst outcome. CMS4 CRC is notoriously resistant against therapeutic interventions, as demonstrated by preclinical studies and retrospective clinical observations. Here, we report the finding that two clinically employed agents, everolimus (EVE) and plicamycin (PLI), efficiently target the prototypic CMS4 cell line MDST8. As compared to the prototypic CMS1 cell line LoVo, MDST8 cells treated with EVE or PLI demonstrated stronger cytostatic and cytotoxic effects, increased signs of apoptosis and autophagy, as well as a more pronounced inhibition of DNA-to-RNA transcription and RNA-to-protein translation. Moreover, nontoxic doses of EVE and PLI induced the shrinkage of MDST8 tumors in mice, yet had only minor tumor growth-reducing effects on LoVo tumors. Altogether, these results suggest that EVE and PLI should be evaluated for their clinical activity against CMS4 CRC.


Adaptor Proteins, Signal Transducing/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Cytoskeletal Proteins/drug effects , Everolimus/therapeutic use , Plicamycin/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Proliferation , Colorectal Neoplasms/pathology , Everolimus/pharmacology , Humans , Mice , Plicamycin/pharmacology
17.
J Exp Med ; 218(10)2021 10 04.
Article En | MEDLINE | ID: mdl-34495298

Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract.


Autoimmunity , Bile Duct Neoplasms/immunology , Cholangiocarcinoma/immunology , Cholangitis/immunology , Animals , Bile Duct Neoplasms/pathology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cholangiocarcinoma/pathology , Cholangitis/pathology , Cytokines/metabolism , Female , Forkhead Transcription Factors/metabolism , Liver/immunology , Liver/pathology , Mice, Inbred C57BL , Monitoring, Immunologic , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology
18.
Mol Cancer Ther ; 20(10): 1941-1955, 2021 10.
Article En | MEDLINE | ID: mdl-34253590

B-cell maturation antigen (BCMA) is an attractive therapeutic target highly expressed on differentiated plasma cells in multiple myeloma and other B-cell malignancies. GSK2857916 (belantamab mafodotin, BLENREP) is a BCMA-targeting antibody-drug conjugate approved for the treatment of relapsed/refractory multiple myeloma. We report that GSK2857916 induces immunogenic cell death in BCMA-expressing cancer cells and promotes dendritic cell activation in vitro and in vivo GSK2857916 treatment enhances intratumor immune cell infiltration and activation, delays tumor growth, and promotes durable complete regressions in immune-competent mice bearing EL4 lymphoma tumors expressing human BCMA (EL4-hBCMA). Responding mice are immune to rechallenge with EL4 parental and EL4-hBCMA cells, suggesting engagement of an adaptive immune response, immunologic memory, and tumor antigen spreading, which are abrogated upon depletion of endogenous CD8+ T cells. Combinations with OX40/OX86, an immune agonist antibody, significantly enhance antitumor activity and increase durable complete responses, providing a strong rationale for clinical evaluation of GSK2857916 combinations with immunotherapies targeting adaptive immune responses, including T-cell-directed checkpoint modulators.


Antibodies, Monoclonal, Humanized/pharmacology , B-Cell Maturation Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , Immunoconjugates/pharmacology , Immunogenic Cell Death , Lymphoma/drug therapy , Multiple Myeloma/drug therapy , Animals , Antibodies, Monoclonal/chemistry , Apoptosis , B-Cell Maturation Antigen/immunology , Cell Proliferation , Female , Humans , Lymphoma/immunology , Lymphoma/metabolism , Lymphoma/pathology , Mice , Mice, Inbred C57BL , Multiple Myeloma/immunology , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Methods Cell Biol ; 164: 27-38, 2021.
Article En | MEDLINE | ID: mdl-34225916

Macroautophagy (hereafter referred to as autophagy) serves the liberation of energy resources through the degradation of cellular components and is characterized by the formation of double-membraned vesicles, commonly referred to as autophagosomes. Microtubule-associated proteins 1A/1B light chain 3B (hereafter referred to as LC3) plays a crucial role during autophagosome formation, as cleavage of its immature form and subsequent conjugation to phosphatidylethanolamine facilitates autophagosomal membrane biogenesis. Indeed, the redistribution of green fluorescent protein (GFP)-conjugated LC3 from a diffuse cytosolic pattern into forming autophagosomes constitutes a morphological phenotype (commonly referred to as LC3 puncta) applicable to phenotypic analysis. The quantification of LC3 puncta in end-point assays has extensively been used in the past, allowing for the identification of autophagy modulators. Here, we describe a robust method employing automated confocal live cell imaging for the study of time-resolved LC3 dynamics. Furthermore, this method can be used to differentiate between phenotypes such as the homogeneous distribution of LC3 puncta in the cytoplasm, and the aggregation of LC3 clusters juxtaposed to the nucleus thus allowing for functional predictions.


Autophagosomes , Microtubule-Associated Proteins , Autophagy , Cell Nucleus , Cytoplasm , Green Fluorescent Proteins/genetics
20.
Methods Cell Biol ; 165: 1-12, 2021.
Article En | MEDLINE | ID: mdl-34311858

Lysosomes are placed at the center of cellular trafficking and degradative pathways. They also function as a signaling platform for nutrient sensing and metabolic reprogramming. Lysosomes play crucial roles in cellular adaptation in response to stress and are tightly connected to a variety of cell death modalities. Several stimuli can initiate the permeabilization of the lysosome membrane, thus causing cell death when the cellular adaptive system fail to repair or replace damaged lysosomes. The induction of lysosomal membrane permeabilization (LMP) triggers the rapid translocation of Galectin 3/LGALS3 from the cytosol to the lysosomal lumen, making it a valuable marker of LMP. However, Galectin 3 can also be recruited to damaged endo/phagosomal membranes. To make sure that Galectin 3 labels damaged lysosomes, it is therefore important to verify its colocalization with lysosomal markers such as lysosome-associated membrane protein 1 (LAMP1). Here, we describe a simple, fast and robust protocol that allows the detection of LMP of individual lysosomes in U2OS cells expressing mCherry-tagged Galectin 3 and mGFP-tagged LAMP1. This method permits the high-throughput detection and quantification of damaged lysosomes by fluorescence microscopy. It also offers the advantage of studying, in the same experiment, the alterations in size, shape and subcellular localization of intact and damaged lysosomes.


Intracellular Membranes , Lysosomes , Cell Death , Cell Membrane Permeability , Lysosomes/metabolism , Microscopy, Fluorescence
...