Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
2.
NPJ Vaccines ; 8(1): 152, 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37803013

A maternal vaccine to protect neonates against Group B Streptococcus invasive infection is an unmet medical need. Such a vaccine should ideally be offered during the third trimester of pregnancy and induce strong immune responses after a single dose to maximize the time for placental transfer of protective antibodies. A key target antigen is the capsular polysaccharide, an anti-phagocytic virulence factor that elicits protective antibodies when conjugated to carrier proteins. The most prevalent polysaccharide serotypes conjugated to tetanus or diphtheria toxoids have been tested in humans as monovalent and multivalent formulations, showing excellent safety profiles and immunogenicity. However, responses were suboptimal in unprimed individuals after a single shot, the ideal schedule for vaccination during the third trimester of pregnancy. In the present study, we obtained and optimized self-assembling virus-like particles conjugated to Group B Streptococcus capsular polysaccharides. The resulting glyco-nanoparticles elicited strong immune responses in mice already after one immunization, providing pre-clinical proof of concept for a single-dose vaccine.

3.
Vaccines (Basel) ; 11(7)2023 Jul 08.
Article En | MEDLINE | ID: mdl-37515035

Generalized Modules for Membrane Antigens (GMMA) are outer membrane vesicles derived from Gram-negative bacteria that can be used to design affordable subunit vaccines. GMMA have been observed to induce a potent humoral immune response in preclinical and clinical studies. In addition, in preclinical studies, it has been found that GMMA can be exploited as optimal antigen carriers for both protein and saccharide antigens, as they are able to promote the enhancement of the antigen-specific humoral immune response when the antigen is overexpressed or chemically conjugated to GMMA. Here we investigated the mechanism of this GMMA carrier effect by immunizing mice and using factor H binding protein and GMMA of Neisseria meningitidis B as an antigen-GMMA model. We confirmed that the antigen displayed on the GMMA surface increased the antigen-specific IgG production and, above all, the antibody functionality measured by the serum bactericidal activity. We found that the enhancement of the bactericidal capacity induced by GMMA carrying the antigen on the surface was associated with the increase in antibody affinity to the antigen, and with the switching toward IgG subclasses with more bactericidal potential. Thus, we conclude that the potent carrier effect of GMMA is due to their ability to promote a better quality of humoral immunity.

4.
Microbiol Spectr ; 11(3): e0359422, 2023 06 15.
Article En | MEDLINE | ID: mdl-37036352

The autotransporter protein secretion system has been used previously to target the secretion of heterologous proteins to the bacterial cell surface and the extracellular milieu at the laboratory scale. The platform is of particular interest for the production of "difficult" recombinant proteins that might cause toxic effects when produced intracellularly. One such protein is IrmA. IrmA is a vaccine candidate that is produced in inclusion bodies requiring refolding. Here, we describe the use and scale-up of the autotransporter system for the secretion of an industrially relevant protein (IrmA). A plasmid expressing IrmA was constructed such that the autotransporter platform could secrete IrmA into the culture supernatant fraction. The autotransporter platform was suitable for the production and purification of IrmA with comparable physical properties to the protein produced in the cytoplasm. The production of IrmA was translated to scale-up protein production conditions resulting in a yield of 29.3 mg/L of IrmA from the culture supernatant, which is consistent with yields of current industrial processes. IMPORTANCE Recombinant protein production is an essential component of the biotechnology sector. Here, we show that the autotransporter platform is a viable method for the recombinant production, secretion, and purification of a "difficult" to produce protein on an industrially relevant scale. Use of the autotransporter platform could reduce the number of downstream processing operations required, thus accelerating the development time and reducing costs for recombinant protein production.


Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Type V Secretion Systems/genetics , Type V Secretion Systems/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cell Membrane/metabolism
5.
Vaccines (Basel) ; 10(8)2022 Jul 26.
Article En | MEDLINE | ID: mdl-35893831

GMMA are outer membrane vesicles (OMVs) released from Gram-negative bacteria genetically modified to enhance OMVs formation that have been shown to be optimal systems to enhance immunogenicity of protein antigens. Here, we selected Neisseria meningitidis factor H binding protein (fHbp) and used the conjugation chemistry as a tool to alter antigen orientation on GMMA. Indeed, fHbp was randomly linked to GMMA or selectively attached via the N-terminus to mimic native presentation of the protein on the bacterial surface. Interestingly, protein and peptide array analyses confirmed that antibodies induced by the selective and the random conjugates showed a pattern very similar to fHbp natively expressed on bacterial surfaces or to the recombinant protein mixed with GMMA, respectively. However, the two conjugates elicited antibodies with similar serum bactericidal activity against meningococcal strains, superior to the protein alone or physically mixed with GMMA. Presentation of fHbp on GMMA strongly enhances the functional immune response elicited by the protein but its orientation on the bacterial surface does not have an impact. This study demonstrates the flexibility of the GMMA platform as a display and delivery system for enhancing antigen immunogenicity and further supports the use of such promising technology for the development of effective vaccines.

6.
Comput Struct Biotechnol J ; 20: 2070-2081, 2022.
Article En | MEDLINE | ID: mdl-35601959

Invasive meningococcal disease can cause fatal sepsis and meningitis and is a global health threat. Factor H binding protein (fHbp) is a protective antigen included in the two currently available vaccines against serogroup B meningococcus (MenB). FHbp is a remarkably variable surface-exposed meningococcal virulence factor with over 1300 different amino acid sequences identified so far. Based on this variability, fHbp has been classified into three variants, two subfamilies or nine modular groups, with low degrees of cross-protective activity. Here, we report the crystal structure of a natural fHbp cross-variant chimera, named variant1-2,3.x expressed by the MenB clinical isolate NL096, at 1.2 Å resolution, the highest resolution of any fHbp structure reported to date. We combined biochemical, site-directed mutagenesis and computational biophysics studies to deeply characterize this rare chimera. We determined the structure to be composed of two adjacent domains deriving from the three variants and determined the molecular basis of its stability, ability to bind Factor H and to adopt the canonical three-dimensional fHbp structure. These studies guided the design of loss-of-function mutations with potential for even greater immunogenicity. Moreover, this study represents a further step in the understanding of the fHbp biological and immunological evolution in nature. The chimeric variant1-2,3.x fHbp protein emerges as an intriguing cross-protective immunogen and suggests that identification of such naturally occurring hybrid proteins may result in stable and cross-protective immunogens when seeking to design and develop vaccines against highly variable pathogens.

7.
Biochem Biophys Res Commun ; 513(1): 287-290, 2019 05 21.
Article En | MEDLINE | ID: mdl-30954224

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections most commonly in immunocompromised, cystic fibrosis (CF) and burns patients. The pilin and Pseudomonas lectins 1 (PA-IL) and 2 (PA-IIL) are known glycan-binding proteins of P. aeruginosa that are involved in adherence to host cells, particularly CF host airways. Recently, new P. aeruginosa surface proteins were identified by reverse vaccinology and tested in vivo as potential vaccine antigens. Three of these, namely PSE17-1, PSE41-5 and PSE54, were screened for glycan binding using glycan arrays displaying glycan structures representative of those found on human cells. Surface plasmon resonance was used to confirm the lectin activity of these proteins, and determined affinities with several host glycans to be in the nanomolar range. PSE17-1 binds hyaluronic acid and sialyl Lewis A and X. PSE41-5 binds terminal ß-linked galactose structures, Lewis and ABO blood group antigens. PSE54 binds to ABO blood group antigens and some terminal ß-linked galactose. All three proteins are novel lectins of P. aeruginosa with potential roles in infection of host cells.


Bacterial Proteins/metabolism , Lectins/metabolism , Polysaccharides/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/physiology , Bacterial Adhesion , Humans , Pseudomonas Infections/prevention & control , Pseudomonas Vaccines/metabolism , Virulence Factors/metabolism
8.
Infect Immun ; 87(3)2019 03.
Article En | MEDLINE | ID: mdl-30530621

Clostridium difficile is a major cause of hospital-acquired antibiotic-associated diarrhea. C. difficile produces two cytotoxins, TcdA and TcdB; both toxins are multidomain proteins that lead to cytotoxicity through the modification and inactivation of small GTPases of the Rho/Rac family. Previous studies have indicated that host glycans are targets for TcdA and TcdB, with interactions thought to be with both α- and ß-linked galactose. In the current study, screening of glycan arrays with different domains of TcdA and TcdB revealed that the binding regions of both toxins interact with a wider range of host glycoconjugates than just terminal α- and ß-linked galactose, including blood groups, Lewis antigens, N-acetylglucosamine, mannose, and glycosaminoglycans. The interactions of TcdA and TcdB with ABO blood group and Lewis antigens were assessed by surface plasmon resonance (SPR). The blood group A antigen was the highest-affinity ligand for both toxins. Free glycans alone or in combination were unable to abolish Vero cell cytotoxicity by TcdB. SPR competition assays indicate that there is more than one glycan binding site on TcdB. Host glycoconjugates are common targets of bacterial toxins, but typically this binding is to a specific structure or related structures. The binding of TcdA and TcdB is to a wide range of host glycans providing a wide range of target cells and tissues in vivo.


Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Enterotoxins/metabolism , Lectins/metabolism , Animals , Cell Survival , Chlorocebus aethiops , Cloning, Molecular , Polysaccharides , Vero Cells
9.
Sci Rep ; 7(1): 17784, 2017 12 19.
Article En | MEDLINE | ID: mdl-29259314

Streptococcus pneumoniae is a leading cause of morbidity and mortality globally. The Pilus-1 proteins, RrgA, RrgB and RrgC of S. pneumoniae have been previously assessed for their role in infection, invasive disease and as possible vaccine candidates. In this study we have investigated the glycan binding repertoire of all three Pilus-1 proteins, identifying that the tip adhesin RrgA has the broadest glycan recognition of the three proteins, binding to maltose/cellobiose, α/ß linked galactose and blood group A and H antigens. RrgB only bound mannose, while RrgC bound a subset of glycans also recognized by RrgA. Adherence of S. pneumoniae TIGR4 to epithelial cells was tested using four of the oligosaccharides identified through the glycan array analysis as competitive inhibitors. The blood group H trisaccharide provided the best blocking of S. pneumoniae TIGR4 adherence. Adherence is the first step in disease, and host glycoconjugates are a common target for many adhesins. This study has identified Pilus-1 proteins as new lectins involved in the targeting of host glycosylation by S. pneumoniae.


Fimbriae, Bacterial/metabolism , Lectins/metabolism , Streptococcus pneumoniae/metabolism , A549 Cells , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cell Line, Tumor , Cellobiose/metabolism , Epithelial Cells/metabolism , Fimbriae Proteins/metabolism , Galactose/metabolism , Humans , Maltose/metabolism , Protein Binding/physiology , Virulence Factors/metabolism
10.
Sci Rep ; 6: 27996, 2016 06 15.
Article En | MEDLINE | ID: mdl-27302108

During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.


Host-Pathogen Interactions , Neisseria meningitidis/physiology , Protein Array Analysis/methods , Staphylococcus aureus/physiology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Animals , Bacterial Proteins/metabolism , Binding Sites , CHO Cells , Complement C1q/metabolism , Cricetulus , Humans , Protein Binding , Recombinant Proteins/metabolism , Scavenger Receptors, Class E/metabolism
11.
Proc Natl Acad Sci U S A ; 113(10): 2714-9, 2016 Mar 08.
Article En | MEDLINE | ID: mdl-26888286

Factor H binding protein (fHbp) is a lipoprotein of Neisseria meningitidis important for the survival of the bacterium in human blood and a component of two recently licensed vaccines against serogroup B meningococcus (MenB). Based on 866 different amino acid sequences this protein is divided into three variants or two families. Quantification of the protein is done by immunoassays such as ELISA or FACS that are susceptible to the sequence variation and expression level of the protein. Here, selected reaction monitoring mass spectrometry was used for the absolute quantification of fHbp in a large panel of strains representative of the population diversity of MenB. The analysis revealed that the level of fHbp expression can vary at least 15-fold and that variant 1 strains express significantly more protein than variant 2 or variant 3 strains. The susceptibility to complement-mediated killing correlated with the amount of protein expressed by the different meningococcal strains and this could be predicted from the nucleotide sequence of the promoter region. Finally, the absolute quantification allowed the calculation of the number of fHbp molecules per cell and to propose a mechanistic model of the engagement of C1q, the recognition component of the complement cascade.


Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Neisseria meningitidis, Serogroup B/metabolism , Amino Acid Sequence , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Genetic Variation , Humans , Mass Spectrometry/methods , Meningitis, Meningococcal/immunology , Meningitis, Meningococcal/microbiology , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup B/classification , Neisseria meningitidis, Serogroup B/genetics , Phylogeny , Species Specificity
12.
PLoS One ; 10(3): e0120807, 2015.
Article En | MEDLINE | ID: mdl-25786110

Long pentraxin 3 (PTX3) is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV) and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091). PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium.


Adjuvants, Immunologic/genetics , Antibodies, Bacterial/biosynthesis , Antigens, Bacterial/immunology , C-Reactive Protein/immunology , Meningitis, Meningococcal/prevention & control , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Serum Amyloid P-Component/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/deficiency , Animals , Animals, Newborn , Antibodies, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Load/drug effects , C-Reactive Protein/administration & dosage , C-Reactive Protein/deficiency , C-Reactive Protein/genetics , Female , Gene Expression , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Male , Meningitis, Meningococcal/immunology , Meningitis, Meningococcal/virology , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/genetics , Mice , Mice, Knockout , Neisseria meningitidis/drug effects , Neisseria meningitidis/genetics , Ovalbumin/administration & dosage , Rats , Rats, Wistar , Serum Amyloid P-Component/administration & dosage , Serum Amyloid P-Component/deficiency , Serum Amyloid P-Component/genetics , Vaccination
13.
Proc Natl Acad Sci U S A ; 112(12): 3680-5, 2015 Mar 24.
Article En | MEDLINE | ID: mdl-25775551

Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7-10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17-secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.


Adjuvants, Immunologic/pharmacology , Staphylococcal Infections/prevention & control , Staphylococcal Vaccines/chemistry , Toll-Like Receptor 7/chemistry , Abscess/pathology , Adaptive Immunity , Animals , Anti-Bacterial Agents/chemistry , Antibodies, Bacterial/immunology , Antigens/immunology , Humans , Mice , Models, Animal , Staphylococcal Infections/immunology , Staphylococcus aureus , Th1 Cells/immunology
14.
Proc Natl Acad Sci U S A ; 111(48): 17128-33, 2014 Dec 02.
Article En | MEDLINE | ID: mdl-25404323

Serogroup B Neisseria meningitidis (MenB) is a major cause of severe sepsis and invasive meningococcal disease, which is associated with 5-15% mortality and devastating long-term sequelae. Neisserial adhesin A (NadA), a trimeric autotransporter adhesin (TAA) that acts in adhesion to and invasion of host epithelial cells, is one of the three antigens discovered by genome mining that are part of the MenB vaccine that recently was approved by the European Medicines Agency. Here we present the crystal structure of NadA variant 5 at 2 Å resolution and transmission electron microscopy data for NadA variant 3 that is present in the vaccine. The two variants show similar overall topology with a novel TAA fold predominantly composed of trimeric coiled-coils with three protruding wing-like structures that create an unusual N-terminal head domain. Detailed mapping of the binding site of a bactericidal antibody by hydrogen/deuterium exchange MS shows that a protective conformational epitope is located in the head of NadA. These results provide information that is important for elucidating the biological function and vaccine efficacy of NadA.


Adhesins, Bacterial/immunology , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Epitope Mapping/methods , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup B/immunology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Amino Acid Sequence , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Binding Sites, Antibody/genetics , Binding Sites, Antibody/immunology , Crystallography, X-Ray , Deuterium Exchange Measurement , Microscopy, Electron, Transmission , Models, Molecular , Molecular Sequence Data , Neisseria meningitidis, Serogroup B/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Multimerization , Protein Stability , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Spectrometry, Mass, Electrospray Ionization , Temperature
15.
PLoS One ; 9(10): e110047, 2014.
Article En | MEDLINE | ID: mdl-25347845

Neisseria meningitidis adhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells.


ADP-Ribosylation Factors/metabolism , Adhesins, Bacterial/metabolism , Epithelial Cells/metabolism , HSP90 Heat-Shock Proteins/metabolism , rab GTP-Binding Proteins/metabolism , ADP-Ribosylation Factor 6 , Cell Line , Humans , Intracellular Space , Neisseria meningitidis/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Binding , Protein Transport , Proteolysis , Recombinant Proteins , Temperature
16.
FASEB J ; 28(4): 1780-93, 2014 Apr.
Article En | MEDLINE | ID: mdl-24421400

Despite the global medical needs associated with Staphylococcus aureus infections, no licensed vaccines are currently available. We identified and characterized a protein annotated as an epidermin leader peptide processing serine protease (EpiP), as a novel S. aureus vaccine candidate. In addition, we determined the structure of the recombinant protein (rEpiP) by X-ray crystallography. The crystal structure revealed that rEpiP was cleaved somewhere between residues 95 and 100, and we found that the cleavage occurs through an autocatalytic intramolecular mechanism. The protein expressed by S. aureus cells also appeared to undergo a similar processing event. To determine whether the protein acts as a serine protease, we mutated the hypothesized catalytic serine 393 residue to alanine, generating rEpiP-S393A. The crystal structure of this mutant protein showed that the polypeptide chain was not cleaved and was not interacting stably with the active site. Indeed, rEpiP-S393A was shown to be impaired in its protease activity. Mice vaccinated with rEpiP were protected from S. aureus infection (34% survival, P=0.0054). Moreover, the protective efficacy generated by rEpiP and rEpiP-S393A was comparable, implying that the noncleaving mutant could be used for vaccination purposes.


Bacterial Proteins/immunology , Serine Endopeptidases/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Biocatalysis , Blotting, Western , Catalytic Domain , Crystallography, X-Ray , Mice , Models, Molecular , Mutation , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Static Electricity
17.
FASEB J ; 28(4): 1644-53, 2014 Apr.
Article En | MEDLINE | ID: mdl-24371123

Factor H binding protein (fHbp) is one of the main antigens of the 4-component meningococcus B (4CMenB) multicomponent vaccine against disease caused by serogroup B Neisseria meningitidis (MenB). fHbp binds the complement down-regulating protein human factor H (hfH), thus resulting in immune evasion. fHbp exists in 3 variant groups with limited cross-protective responses. Previous studies have described the generation of monoclonal antibodies (mAbs) targeting variant-specific regions of fHbp. Here we report for the first time the functional characterization of two mAbs that recognize a wide panel of fHbp variants and subvariants on the MenB surface and that are able to inhibit fHbp binding to hfH. The antigenic regions targeted by the two mAbs were accurately mapped by hydrogen-deuterium exchange mass spectrometry (HDX-MS), revealing partially overlapping epitopes on the N terminus of fHbp. Furthermore, while none of the mAbs had bactericidal activity on its own, a synergistic effect was observed for each of them when tested by the human complement serum bactericidal activity (hSBA) assay in combination with a second nonbactericidal mAb. The bases underlying fHbp variant cross-reactivity, as well as inhibition of hfH binding and cooperativity effect observed for the two mAbs, are discussed in light of the mapped epitopes.


Antibodies, Monoclonal/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Cross Reactions/immunology , Epitopes/immunology , Neisseria meningitidis, Serogroup B/immunology , Antibodies, Monoclonal/chemistry , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Complement Factor H/immunology , Deuterium Exchange Measurement , Epitope Mapping/methods , Epitopes/chemistry , Epitopes/genetics , Genetic Variation , Humans , Mass Spectrometry , Meningococcal Infections/immunology , Meningococcal Infections/microbiology , Meningococcal Vaccines/immunology , Models, Molecular , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis, Serogroup B/physiology , Protein Binding/immunology , Protein Conformation , Surface Plasmon Resonance
18.
Infect Immun ; 81(8): 2851-60, 2013 Aug.
Article En | MEDLINE | ID: mdl-23716610

Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection.


Bacterial Proteins/immunology , Bacterial Toxins/immunology , Bacterial Vaccines/immunology , Clostridium Infections/immunology , Enterotoxins/immunology , Animals , Antibodies, Bacterial/immunology , Antibodies, Neutralizing/immunology , Antigens, Bacterial/immunology , Clostridioides difficile/immunology , Clostridium Infections/prevention & control , Cricetinae , Disease Models, Animal , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Mice , Recombinant Proteins/immunology
19.
Proc Natl Acad Sci U S A ; 110(9): 3304-9, 2013 Feb 26.
Article En | MEDLINE | ID: mdl-23396847

Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen-antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å(2) on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen-antibody interfaces are required to understand and design effective immunogens.


Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Epitopes/immunology , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Neisseria meningitidis/pathogenicity , Virulence Factors/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Cell Surface Display Techniques , Crystallography, X-Ray , Deuterium Exchange Measurement , Epitope Mapping , Epitopes/chemistry , Mass Spectrometry , Meningococcal Infections/immunology , Meningococcal Infections/microbiology , Meningococcal Infections/prevention & control , Models, Molecular , Peptides/chemistry , Peptides/immunology , Protein Binding/immunology , Surface Plasmon Resonance , Virulence Factors/chemistry
20.
Biochem J ; 449(3): 683-93, 2013 Feb 01.
Article En | MEDLINE | ID: mdl-23113737

Staphylococcus aureus is a human pathogen causing globally significant morbidity and mortality. The development of antibiotic resistance in S. aureus highlights the need for a preventive vaccine. In the present paper we explore the structure and function of FhuD2 (ferric-hydroxamate uptake D2), a staphylococcal surface lipoprotein mediating iron uptake during invasive infection, recently described as a promising vaccine candidate. Differential scanning fluorimetry and calorimetry studies revealed that FhuD2 is stabilized by hydroxamate siderophores. The FhuD2-ferrichrome interaction was of nanomolar affinity in surface plasmon resonance experiments and fully iron(III)-dependent. We determined the X-ray crystallographic structure of ligand-bound FhuD2 at 1.9 Å (1 Å=0.1 nm) resolution, revealing the bilobate fold of class III SBPs (solute-binding proteins). The ligand, ferrichrome, occupies a cleft between the FhuD2 N- and C-terminal lobes. Many FhuD2-siderophore interactions enable the specific recognition of ferrichrome. Biochemical data suggest that FhuD2 does not undergo significant conformational changes upon siderophore binding, supporting the hypothesis that the ligand-bound complex is essential for receptor engagement and uptake. Finally, immunizations with FhuD2 alone or FhuD2 formulated with hydroxamate siderophores were equally protective in a murine staphylococcal infection model, confirming the suitability and efficacy of apo-FhuD2 as a protective antigen, and suggesting that other class III SBPs might also be exploited as vaccine candidates.


Bacterial Proteins/chemistry , Membrane Transport Proteins/chemistry , Periplasmic Binding Proteins/chemistry , Staphylococcus aureus/metabolism , Virulence Factors/chemistry , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Crystallography, X-Ray , Ferric Compounds/metabolism , Ferrichrome/metabolism , Genes, Bacterial , Humans , Hydroxamic Acids/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/immunology , Membrane Transport Proteins/metabolism , Mice , Models, Molecular , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/immunology , Periplasmic Binding Proteins/metabolism , Protein Stability , Siderophores/metabolism , Staphylococcal Vaccines/chemistry , Staphylococcus aureus/genetics , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity , Static Electricity , Transferrin/metabolism , Virulence , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolism
...