Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Biol Chem ; 300(3): 105768, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367664

Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.


Galactans , Mycobacterium , Galactans/biosynthesis , Polymers/metabolism , Proteomics , Transferases/metabolism , Mycobacterium/metabolism
2.
Biomedicines ; 11(7)2023 Jul 12.
Article En | MEDLINE | ID: mdl-37509615

Tuberculosis (TB) is a leading infectious disease with serious antibiotic resistance. The benzothiazinone (BTZ) scaffold PBTZ169 kills Mycobacterium tuberculosis (Mtb) through the inhibition of the essential cell wall enzyme decaprenylphosphoryl-ß-D-ribose 2'-oxidase (DprE1). PBTZ169 shows anti-TB potential in animal models and pilot clinical tests. Although highly potent, the BTZ type DprE1 inhibitors in general show extremely low aqueous solubility, which adversely affects the drug-like properties. To improve the compounds physicochemical properties, we generated a series of BTZ analogues. Several optimized compounds had MIC values against Mtb lower than 0.01 µM. The representative compound 37 displays improved solubility and bioavailability compared to the lead compound. Additionally, compound 37 shows Mtb-killing ability in an acute infection mouse model.

3.
J Med Chem ; 64(19): 14526-14539, 2021 10 14.
Article En | MEDLINE | ID: mdl-34609861

The benzothiazinone (BTZ) scaffold compound PBTZ169 kills Mycobacterium tuberculosis by inhibiting the essential flavoenzyme DprE1, consequently blocking the synthesis of the cell wall component arabinans. While extraordinarily potent against M. tuberculosis with a minimum inhibitory concentration (MIC) less than 0.2 ng/mL, its low aqueous solubility and bioavailability issues need to be addressed. Here, we designed and synthesized a series of 6-methanesulfonyl substituted BTZ analogues; further exploration introduced five-member aromatic heterocycles as linkers to attach an aryl group as the side chain. Our work led to the discovery of a number of BTZ derived compounds with potent antitubercular activity. The optimized compounds 6 and 38 exhibited MIC 47 and 30 nM, respectively. Compared to PBTZ169, both compounds displayed increased aqueous solubility and higher stability in human liver microsomes. This study suggested that an alternative side-chain modification strategy could be implemented to improve the druglike properties of the BTZ-based compounds.


Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemistry , Humans , Microbial Sensitivity Tests , Microsomes, Liver/drug effects , Structure-Activity Relationship
4.
RSC Med Chem ; 12(1): 62-72, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-34046598

The formation efficiency of hydride-induced Meisenheimer complexes of nitroaromatic compounds is consistent with their anti-TB activities exemplied by MDL860 and benzothiazol N-oxide (BTO) analogs. Herein we report that nitro cyano phenoxybenzenes (MDL860 and analogs) reacted slowly and incompletely which reflected their moderate anti-TB activity, in contrast to the instantaneous reaction of BTO derivatives to quantitatively generate Meisenheimer complexes which corresponded to their enhanced anti-TB activity. These results were corroborated by mycobacterial and radiolabelling studies that confirmed inhibition of the DprE1 enzyme by BTO derivatives but not MDL860 analogs.

5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article En | MEDLINE | ID: mdl-33879617

Mycobacterium tuberculosis, one of the deadliest pathogens in human history, is distinguished by a unique, multilayered cell wall, which offers the bacterium a high level of protection from the attacks of the host immune system. The primary structure of the cell wall core, composed of covalently linked peptidoglycan, branched heteropolysaccharide arabinogalactan, and mycolic acids, is well known, and numerous enzymes involved in the biosynthesis of its components are characterized. The cell wall biogenesis takes place at both cytoplasmic and periplasmic faces of the plasma membrane, and only recently some of the specific transport systems translocating the metabolic intermediates between these two compartments have been characterized [M. Jackson, C. M. Stevens, L. Zhang, H. I. Zgurskaya, M. Niederweis, Chem. Rev., 10.1021/acs.chemrev.0c00869 (2020)]. In this work, we use CRISPR interference methodology in Mycobacterium smegmatis to functionally characterize an ATP-binding cassette (ABC) transporter involved in the translocation of galactan precursors across the plasma membrane. We show that genetic knockdown of the transmembrane subunit of the transporter results in severe morphological changes and the accumulation of an aberrantly long galactan precursor. Based on similarities with structures and functions of specific O-antigen ABC transporters of gram-negative bacteria [C. Whitfield, D. M. Williams, S. D. Kelly, J. Biol. Chem. 295, 10593-10609 (2020)], we propose a model for coupled synthesis and export of the galactan polymer precursor in mycobacteria.


ATP-Binding Cassette Transporters/metabolism , Galactans/metabolism , Lipopolysaccharides/metabolism , Mycobacterium smegmatis/metabolism , ATP-Binding Cassette Transporters/genetics , Models, Molecular , Mycobacterium smegmatis/genetics
6.
Eur J Med Chem ; 208: 112773, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-32898793

Decaprenylphosphoryl-ß-d-ribose 2'-oxidoreductase (DprE1) is a promising drug target for the development of novel anti-tubercular agents, and inhibitors of DprE1 are being investigated extensively. Among them, the 1,3-benzothiazinone compounds such as BTZ043, and its closer congener, PBTZ169, are undergoing clinical studies. It has been shown that both BTZ compounds are prodrugs, the nitro group is reduced to nitroso first, to which an adjacent Cys387 in the DprE1 binding pocket is covalently bound and results in suicide enzyme inhibition. We figured that replacement of the nitro with an electrophilic warhead would still achieve covalent interaction with nucleophilic Cys387, while the required reductive activation could be circumvented. To test this hypothesis, a number of covalent inhibitors of DprE1 were designed and prepared. The compounds inhibitory potency against DprE1 and anti-tubercular activity were investigated, their chemical reactivity, formation of covalent adduct between the warhead and the enzyme was demonstrated by mass spectrometry.


Alcohol Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Thiazines/pharmacology , Alcohol Oxidoreductases/chemistry , Antitubercular Agents/chemical synthesis , Bacterial Proteins/chemistry , Cysteine/chemistry , Drug Design , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Thiazines/chemical synthesis
7.
Antibiotics (Basel) ; 9(1)2020 Jan 06.
Article En | MEDLINE | ID: mdl-31935842

While target-based drug design has proved successful in several therapeutic areas, this approach has not yet provided compelling outcomes in the field of antibacterial agents. This statement remains especially true for the development of novel therapeutic interventions against tuberculosis, an infectious disease that is among the top ten leading causes of death globally. Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis pathogen and it could provide a promising target for the design of new drugs. In this review, we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including landmark findings that led to the discovery and understanding of three key enzymes in this pathway: UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate the efforts aimed at their inhibition. The predicted common transition states of the three enzymes provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable property in the mitigation of drug resistance. We believe that a tight interplay between target-based computational approaches and experimental methods will result in the development of original inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.

8.
J Med Chem ; 62(17): 8115-8139, 2019 09 12.
Article En | MEDLINE | ID: mdl-31393122

We report herein the discovery of 3,5-dinitrophenyl 1,2,4-triazoles with excellent and selective antimycobacterial activities against Mycobacterium tuberculosis strains, including clinically isolated multidrug-resistant strains. Thorough structure-activity relationship studies of 3,5-dinitrophenyl-containing 1,2,4-triazoles and their trifluoromethyl analogues revealed the key role of the position of the 3,5-dinitrophenyl fragment in the antitubercular efficiency. Among the prepared compounds, the highest in vitro antimycobacterial activities against M. tuberculosis H37Rv and against seven clinically isolated multidrug-resistant strains of M. tuberculosis were found with S-substituted 4-alkyl-5-(3,5-dinitrophenyl)-4H-1,2,4-triazole-3-thiols and their 3-nitro-5-(trifluoromethyl)phenyl analogues. The minimum inhibitory concentrations of these compounds reached 0.03 µM, which is superior to all the current first-line anti-tuberculosis drugs. Furthermore, almost all compounds with excellent antimycobacterial activities exhibited very low in vitro cytotoxicities against two proliferating mammalian cell lines. The docking study indicated that these compounds acted as the inhibitors of decaprenylphosphoryl-ß-d-ribofuranose 2'-oxidase enzyme, which was experimentally confirmed by two independent radiolabeling experiments.


Alcohol Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Development , Mycobacterium tuberculosis/drug effects , Alcohol Oxidoreductases/metabolism , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Dinitrobenzenes/chemical synthesis , Dinitrobenzenes/chemistry , Dinitrobenzenes/pharmacology , Dose-Response Relationship, Drug , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/pharmacology , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology
...