Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 20(1): 572, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476500

RESUMEN

Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.


Asunto(s)
Degeneración Retiniana , Humanos , Degeneración Retiniana/terapia
2.
Life Sci ; 291: 120273, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016877

RESUMEN

AIM: Eye organoids are 3D models of the retina that provide new possibilities for studying retinal development, drug toxicity and the molecular mechanisms of diseases. Although there are several protocols that can be used to generate functional tissues, none have been used to assemble human retinal organoids containing mesenchymal stem cells (MSCs). MAIN METHODS: In this study we intend to assess the effective interactions of MSCs and human embryonic stem cells (hESCs) during retinal organoid formation. We evaluated the inducing activities of bone marrow MSCs (BM-MSCs), trabecular meshwork (TM), and stem cells from apical papilla (SCAP)-derived MSCs in differentiation of hESCs in a three-dimensional (3D) direct co-culture system. KEY FINDINGS: In comparison with the two other MSC sources, the induction potential of SCAP was confirmed in the co-culture system. Although the different SCAP cell ratios did not show any significant morphology changes during the first seven days, increasing the number of SCAPs improved formation of the optic vesicle (OV) structure, which was confirmed by assessment of specific markers. The OVs subsequently developed to an optic cup (OC), which was similar to the in vivo environment. These arrangements expressed MITF in the outer layer and CHX10 in the inner layer. SIGNIFICANCE: We assessed the inducing activity of SCAP during differentiation of hESCs towards a retinal fate in a 3D organoid system. However, future studies be conducted to gather additional details about the development of the eye field, retinal differentiation, and the molecular mechanisms of diseases.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Encía/citología , Retina/citología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Ojo/citología , Encía/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Organoides/citología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Retina/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA