Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Mod Pathol ; : 100615, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322118

RESUMEN

Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous group of biologically distinct entities characterized by variable degrees of ineffective hematopoiesis. Recently, two classification systems (the 5th edition of the WHO Classification and the International Consensus Classification) further sub-characterized MDS into morphologic and genetically defined groups. Accurate diagnosis and subclassification of MDS require a multistep systemic approach. The International Consortium for MDS (icMDS) summarizes a contemporary, practical, and multimodal approach to MDS diagnosis and classification.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39127052

RESUMEN

OBJECTIVES: To address the need for interactive visualization tools and databases in characterizing multimorbidity patterns across different populations, we developed the Phenome-wide Multi-Institutional Multimorbidity Explorer (PheMIME). This tool leverages three large-scale EHR systems to facilitate efficient analysis and visualization of disease multimorbidity, aiming to reveal both robust and novel disease associations that are consistent across different systems and to provide insight for enhancing personalized healthcare strategies. MATERIALS AND METHODS: PheMIME integrates summary statistics from phenome-wide analyses of disease multimorbidities, utilizing data from Vanderbilt University Medical Center, Mass General Brigham, and the UK Biobank. It offers interactive and multifaceted visualizations for exploring multimorbidity. Incorporating an enhanced version of associationSubgraphs, PheMIME also enables dynamic analysis and inference of disease clusters, promoting the discovery of complex multimorbidity patterns. A case study on schizophrenia demonstrates its capability for generating interactive visualizations of multimorbidity networks within and across multiple systems. Additionally, PheMIME supports diverse multimorbidity-based discoveries, detailed further in online case studies. RESULTS: The PheMIME is accessible at https://prod.tbilab.org/PheMIME/. A comprehensive tutorial and multiple case studies for demonstration are available at https://prod.tbilab.org/PheMIME_supplementary_materials/. The source code can be downloaded from https://github.com/tbilab/PheMIME. DISCUSSION: PheMIME represents a significant advancement in medical informatics, offering an efficient solution for accessing, analyzing, and interpreting the complex and noisy real-world patient data in electronic health records. CONCLUSION: PheMIME provides an extensive multimorbidity knowledge base that consolidates data from three EHR systems, and it is a novel interactive tool designed to analyze and visualize multimorbidities across multiple EHR datasets. It stands out as the first of its kind to offer extensive multimorbidity knowledge integration with substantial support for efficient online analysis and interactive visualization.

3.
Heliyon ; 10(15): e35103, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170274

RESUMEN

Perfusion of porous scaffolds transports cells to the surface to yield cellular constructs for 3D models of disease and for tissue engineering applications. While ceramic scaffolds mimic the structure and composition of trabecular bone, their opacity and tortuous pores limit the penetration of light into the interior. Scaffolds that are both perfusable and amenable to fluorescence microscopy are therefore needed to visualize the spatiotemporal dynamics of cells in the bone microenvironment. In this study, a hybrid injection molding approach was designed to enable rapid prototyping of collector arrays with variable configurations that are amenable to longitudinal imaging of attached human mesenchymal stem cells (hMSCs) using fluorescence microscopy. Cylindrical collectors were arranged in an array that is permeable to perfusion in the xy-plane and to light in the z-direction for imaging from below. The effects of the collector radius, number, and spacing on the collection efficiency of perfused hMSCs was simulated using computational fluid dynamics (CFD) and measured experimentally using fluorescence microscopy. The effect of collector diameter on simulated and experimental cell collection efficiencies followed a trend similar to that predicted by interception theory corrected for intermolecular and hydrodynamic forces for the arrays with constant collector spacing. In contrast, arrays designed with constant collector number yielded collection efficiencies that poorly fit the trend with collector radius predicted by interception theory. CFD simulations of collection efficiency agreed with experimental measurements within a factor of two. These findings highlight the utility of CFD simulations and hybrid injection molding for rapid prototyping of collector arrays to optimize the longitudinal imaging of cells without the need for expensive and time-consuming tooling.

4.
Proc Natl Acad Sci U S A ; 121(35): e2408889121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39167600

RESUMEN

WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.


Asunto(s)
Neoplasias Hematológicas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Ratones , Línea Celular Tumoral , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico
5.
Blood ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958467

RESUMEN

Myelodysplastic syndromes/neoplasms (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. While genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3,233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations (CNAs), and copy-neutral loss of heterozygosity (cnLOH) were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91, 43, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and LOH at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not-otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow blast percentage across groups ranged from 1.5 to 10%, and the median overall survival from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of bone marrow blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and may inform future classification schemas and translational therapeutic research.

6.
Blood ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996210

RESUMEN

Clonal cytopenia of undetermined significance (CCUS) represents a distinct disease entity characterized by myeloid-related somatic mutations with a variant allele fraction of ≥2% in individuals with unexplained cytopenia(s) but without a myeloid neoplasm (MN). Notably, CCUS carries a risk of progressing to MN, particularly in cases featuring high-risk mutations. Understanding CCUS requires dedicated studies to elucidate its risk factors and natural history. Our analysis of 357 CCUS patients investigated the interplay between clonality, cytopenia, and prognosis. Multivariate analysis identified 3 key adverse prognostic factors: the presence of splicing mutation(s) (score = 2 points), platelet count <100×109/L (score = 2.5), and ≥2 mutations (score = 3). Variable scores were based on the coefficients from the Cox proportional hazards model. This led to the development of the Clonal Cytopenia Risk Score (CCRS), which stratified patients into low- (score <2.5 points), intermediate- (score 2.5-<5), and high-risk (score ≥5) groups. The CCRS effectively predicted 2-year cumulative incidence of MN for low- (6.4%), intermediate- (14.1%), and high- (37.2%) risk groups, respectively, by Gray's test (P <.0001). We further validated the CCRS by applying it to an independent CCUS cohort of 104 patients, demonstrating a c-index of 0.64 (P =.005) in stratifying the cumulative incidence of MN. Our study underscores the importance of integrating clinical and molecular data to assess the risk of CCUS progression, making the CCRS a valuable tool that is practical and easily calculable. These findings are clinically relevant, shaping the management strategies for CCUS and informing future clinical trial designs.

7.
Haematologica ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695123

RESUMEN

Early molecular response (EMR) at 3 months is predictive of improved overall survival (OS) and progression-free survival (PFS) in patients with chronic myeloid leukemia in the chronic phase (CML-CP). Although about one-third of patients treated with first-line imatinib do not achieve EMR, long-term OS and PFS are still observed in most patients. DASCERN (NCT01593254) is a prospective, phase IIb, randomized trial evaluating a switch to dasatinib in patients who have not achieved EMR after 3 months of treatment with first-line imatinib. Early analysis demonstrated an improved major molecular response (MMR) rate at 12 months with dasatinib versus imatinib (29% vs. 13%, P=0.005). Here, we report results from the final 5-year follow-up. In total, 174 patients were randomized to dasatinib and 86 to remain on imatinib. Forty-six (53%) patients who remained on imatinib but subsequently experienced failure were allowed to cross over to dasatinib per protocol. At a minimum follow-up of 60 months, the cumulative MMR rate was significantly higher in patients randomized to dasatinib versus imatinib (77% vs. 44%, P.

8.
Hemasphere ; 8(5): e69, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774655

RESUMEN

Notable treatment advances have been made in recent years for patients with myelodysplastic syndromes/neoplasms (MDS), and several new drugs are under development. For example, the emerging availability of oral MDS therapies holds the promise of improving patients' health-related quality of life (HRQoL). Within this rapidly evolving landscape, the inclusion of HRQoL and other patient-reported outcomes (PROs) is critical to inform the benefit/risk assessment of new therapies or to assess whether patients live longer and better, for what will likely remain a largely incurable disease. We provide practical considerations to support investigators in generating high-quality PRO data in future MDS trials. We first describe several challenges that are to be thoughtfully considered when designing an MDS-focused clinical trial with a PRO endpoint. We then discuss aspects related to the design of the study, including PRO assessment strategies. We also discuss statistical approaches illustrating the potential value of time-to-event analyses and their implications within the estimand framework. Finally, based on a literature review of MDS randomized controlled trials with a PRO endpoint, we note the PRO items that deserve special attention when reporting future MDS trial results. We hope these practical considerations will facilitate the generation of rigorous PRO data that can robustly inform MDS patient care and support treatment decision-making for this patient population.

9.
Blood Adv ; 8(13): 3453-3463, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38608257

RESUMEN

ABSTRACT: Clonal hematopoiesis (CH) is an age-associated phenomenon leading to an increased risk of both hematologic malignancy and nonmalignant organ dysfunction. Increasingly available genetic testing has made the incidental discovery of CH clinically common yet evidence-based guidelines and effective management strategies to prevent adverse CH health outcomes are lacking. To address this gap, the prospective CHIVE (clonal hematopoiesis and inflammation in the vasculature) registry and biorepository was created to identify and monitor individuals at risk, support multidisciplinary CH clinics, and refine taxonomy and standards of practice for CH risk mitigation. Data from the first 181 patients enrolled in this prospective registry recapitulate the molecular epidemiology of CH from biobank-scale retrospective studies, with DNMT3A, TET2, ASXL1, and TP53 as the most commonly mutated genes. Blood counts across all hematopoietic lineages trended lower in patients with CH. In addition, patients with CH had higher rates of end organ dysfunction, in particular chronic kidney disease. Among patients with CH, variant allele frequency was independently associated with the presence of cytopenias and progression to hematologic malignancy, whereas other common high-risk CH clone features were not clear. Notably, accumulation of multiple distinct high-risk clone features was also associated with cytopenias and hematologic malignancy progression, supporting a recently published CH risk score. Surprisingly, ∼30% of patients enrolled in CHIVE from CH clinics were adjudicated as not having clonal hematopoiesis of indeterminate potential, highlighting the need for molecular standards and purpose-built assays in this field. Maintenance of this well-annotated cohort and continued expansion of CHIVE to multiple institutions are underway and will be critical to understanding how to thoughtfully care for this patient population.


Asunto(s)
Hematopoyesis Clonal , Inflamación , Humanos , Estudios Prospectivos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Sistema de Registros , Neoplasias Hematológicas/genética , Mutación , Adulto
10.
Blood ; 144(11): 1221-1229, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-38687605

RESUMEN

ABSTRACT: Mutations in UBA1, which are disease-defining for VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, have been reported in patients diagnosed with myelodysplastic syndromes (MDS). Here, we define the prevalence and clinical associations of UBA1 mutations in a representative cohort of patients with MDS. Digital droplet polymerase chain reaction profiling of a selected cohort of 375 male patients lacking MDS disease-defining mutations or established World Health Organization (WHO) disease classification identified 28 patients (7%) with UBA1 p.M41T/V/L mutations. Using targeted sequencing of UBA1 in a representative MDS cohort (n = 2027), we identified an additional 27 variants in 26 patients (1%), which we classified as likely/pathogenic (n = 12) and of unknown significance (n = 15). Among the total 40 patients with likely/pathogenic variants (2%), all were male and 63% were classified by WHO 2016 criteria as MDS with multilineage dysplasia or MDS with single-lineage dysplasia. Patients had a median of 1 additional myeloid gene mutation, often in TET2 (n = 12), DNMT3A (n = 10), ASXL1 (n = 3), or SF3B1 (n = 3). Retrospective clinical review, where possible, showed that 82% (28/34) UBA1-mutant cases had VEXAS syndrome-associated diagnoses or inflammatory clinical presentation. The prevalence of UBA1 mutations in patients with MDS argues for systematic screening for UBA1 in the management of MDS.


Asunto(s)
Mutación , Síndromes Mielodisplásicos , Enzimas Activadoras de Ubiquitina , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/diagnóstico , Masculino , Enzimas Activadoras de Ubiquitina/genética , Persona de Mediana Edad , Anciano , Adulto , Anciano de 80 o más Años , Femenino , Adulto Joven
11.
Elife ; 122024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682900

RESUMEN

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteína de la Leucemia Mieloide-Linfoide , Proteínas Nucleares , Ribosomas , Proteína p53 Supresora de Tumor , Humanos , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Peptidomiméticos/farmacología
12.
medRxiv ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585743

RESUMEN

Background: Electronic health records (EHR) are increasingly used for studying multimorbidities. However, concerns about accuracy, completeness, and EHRs being primarily designed for billing and administrative purposes raise questions about the consistency and reproducibility of EHR-based multimorbidity research. Methods: Utilizing phecodes to represent the disease phenome, we analyzed pairwise comorbidity strengths using a dual logistic regression approach and constructed multimorbidity as an undirected weighted graph. We assessed the consistency of the multimorbidity networks within and between two major EHR systems at local (nodes and edges), meso (neighboring patterns), and global (network statistics) scales. We present case studies to identify disease clusters and uncover clinically interpretable disease relationships. We provide an interactive web tool and a knowledge base combining data from multiple sources for online multimorbidity analysis. Findings: Analyzing data from 500,000 patients across Vanderbilt University Medical Center and Mass General Brigham health systems, we observed a strong correlation in disease frequencies (Kendall's τ = 0.643) and comorbidity strengths (Pearson ρ = 0.79). Consistent network statistics across EHRs suggest similar structures of multimorbidity networks at various scales. Comorbidity strengths and similarities of multimorbidity connection patterns align with the disease genetic correlations. Graph-theoretic analyses revealed a consistent core-periphery structure, implying efficient network clustering through threshold graph construction. Using hydronephrosis as a case study, we demonstrated the network's ability to uncover clinically relevant disease relationships and provide novel insights. Interpretation: Our findings demonstrate the robustness of large-scale EHR data for studying phenome-wide multimorbidities. The alignment of multimorbidity patterns with genetic data suggests the potential utility for uncovering shared biology of diseases. The consistent core-periphery structure offers analytical insights to discover complex disease interactions. This work also sets the stage for advanced disease modeling, with implications for precision medicine. Funding: VUMC Biostatistics Development Award, the National Institutes of Health, and the VA CSRD.

13.
J Mol Diagn ; 26(7): 563-573, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588769

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon in which hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP mutations are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or to serial sequencing. In this study, an affordable (approximately US $8 per sample), accurate, and scalable sequencing assay for CHIP is introduced and validated. The efficacy of the assay was demonstrated by identifying CHIP mutations in a cohort of 456 individuals with DNA collected at multiple time points in Vanderbilt University's biobank and quantifying clonal expansion rates over time. A total of 101 individuals with CHIP/clonal cytopenia of undetermined significance were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction at both time points. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. Additionally, mutation co-occurrence and clonal competition between multiple driver mutations were explored.


Asunto(s)
Hematopoyesis Clonal , Mutación , Humanos , Hematopoyesis Clonal/genética , Masculino , Femenino , Anciano , Persona de Mediana Edad , Adulto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Análisis Costo-Beneficio , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Evolución Clonal/genética , Anciano de 80 o más Años , Hematopoyesis/genética
14.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659776

RESUMEN

CRISPR-Cas9 is a useful tool for inserting precise genetic alterations through homology-directed repair (HDR), although current methods rely on provision of an exogenous repair template. Here, we tested the possibility of repairing heterozygous single nucleotide variants (SNVs) using the cell's own wild-type allele rather than an exogenous template. Using high-fidelity Cas9 to perform allele-specific CRISPR across multiple human leukemia cell lines as well as in primary hematopoietic cells from patients with leukemia, we find high levels of reversion to wild-type in the absence of exogenous template. Moreover, we demonstrate that bulk treatment to revert a truncating mutation in ASXL1 using CRISPR-mediated interallelic gene conversion (IGC) is sufficient to prolong survival in a human cell line-derived xenograft model (median survival 33 days vs 27.5 days; p = 0.0040). These results indicate that IGC can be applied to numerous types of leukemia and can meaningfully alter cellular phenotypes at scale. Because our method targets single-base mutations, rather than larger variants targeted by IGC in prior studies, it greatly expands the pool of risk-increasing genetic lesions which could potentially be targeted by IGC. This technique may reduce cost and complexity for experiments modeling phenotypic consequences of SNVs. The principles of SNV-specific IGC demonstrated in this proof-of-concept study could be applied to investigate the phenotypic effects of targeted clonal reduction of leukemogenic SNV driver mutations.

15.
Clin Cancer Res ; 30(11): 2475-2485, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38551504

RESUMEN

PURPOSE: Solid organ transplant recipients comprise a unique population of immunosuppressed patients with increased risk of malignancy, including hematologic neoplasms. Clonal hematopoiesis of indeterminate potential (CHIP) represents a known risk factor for hematologic malignancy and this study describes the prevalence and patterns of CHIP mutations across several types of solid organ transplants. EXPERIMENTAL DESIGN: We use two national biobank cohorts comprised of >650,000 participants with linked genomic and longitudinal phenotypic data to describe the features of CHIP across 2,610 individuals who received kidney, liver, heart, or lung allografts. RESULTS: We find individuals with an allograft before their biobank enrollment had an increased prevalence of TET2 mutations (OR, 1.90; P = 4.0e-4), but individuals who received transplants post-enrollment had a CHIP mutation spectrum similar to that of the general population, without enrichment of TET2. In addition, we do not observe an association between CHIP and risk of incident transplantation among the overall population (HR, 1.02; P = 0.91). And in an exploratory analysis, we do not find evidence for a strong association between CHIP and rates of transplant complications such as rejection or graft failure. CONCLUSIONS: These results demonstrate that recipients of solid organ transplants display a unique pattern of clonal hematopoiesis with enrichment of TET2 driver mutations, the causes of which remain unclear and are deserving of further study.


Asunto(s)
Hematopoyesis Clonal , Proteínas de Unión al ADN , Dioxigenasas , Mutación , Trasplante de Órganos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Hematopoyesis Clonal/genética , Proteínas de Unión al ADN/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/epidemiología , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/patología , Trasplante de Órganos/efectos adversos , Proteínas Proto-Oncogénicas/genética , Factores de Riesgo , Receptores de Trasplantes
16.
Blood Adv ; 8(14): 3665-3678, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507736

RESUMEN

ABSTRACT: Clonal hematopoiesis (CH) is an age-associated phenomenon that increases the risk of hematologic malignancy and cardiovascular disease. CH is thought to enhance disease risk through inflammation in the peripheral blood.1 Here, we profile peripheral blood gene expression in 66 968 single cells from a cohort of 17 patients with CH and 7 controls. Using a novel mitochondrial DNA barcoding approach, we were able to identify and separately compare mutant Tet methylcytosine dioxygenase 2 (TET2) and DNA methyltransferase 3A (DNMT3A) cells with nonmutant counterparts. We discovered the vast majority of mutated cells were in the myeloid compartment. Additionally, patients harboring DNMT3A and TET2 CH mutations possessed a proinflammatory profile in CD14+ monocytes through previously unrecognized pathways such as galectin and macrophage inhibitory factor. We also found that T cells from patients with CH, although mostly unmutated, had decreased expression of GTPase of the immunity associated protein genes, which are critical to T-cell development, suggesting that CH impairs T-cell function.


Asunto(s)
Hematopoyesis Clonal , Inflamación , Humanos , Inflamación/genética , Genotipo , Mutación , Perfilación de la Expresión Génica , Dioxigenasas , ADN Metiltransferasa 3A/metabolismo , Masculino , Femenino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
17.
Blood Cancer J ; 14(1): 6, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225345

RESUMEN

Clonal hematopoiesis (CH) can be caused by either single gene mutations (eg point mutations in JAK2 causing CHIP) or mosaic chromosomal alterations (e.g., loss of heterozygosity at chromosome 9p). CH is associated with a significantly increased risk of hematologic malignancies. However, the absolute rate of transformation on an annualized basis is low. Improved prognostication of transformation risk is urgently needed for routine clinical practice. We hypothesized that the co-occurrence of CHIP and mCAs at the same locus (e.g., transforming a heterozygous JAK2 CHIP mutation into a homozygous mutation through concomitant loss of heterozygosity at chromosome 9) might have important prognostic implications for malignancy transformation risk. We tested this hypothesis using our discovery cohort, the UK Biobank (n = 451,180), and subsequently validated it in the BioVU cohort (n = 91,335). We find that individuals with a concurrent somatic mutation and mCA were at significantly increased risk of hematologic malignancy (for example, In BioVU cohort incidence of hematologic malignancies is higher in individuals with co-occurring JAK2 V617F and 9p CN-LOH; HR = 54.76, 95% CI = 33.92-88.41, P < 0.001 vs. JAK2 V617F alone; HR = 44.05, 95% CI = 35.06-55.35, P < 0.001). Currently, the 'zygosity' of the CHIP mutation is not routinely reported in clinical assays or considered in prognosticating CHIP transformation risk. Based on these observations, we propose that clinical reports should include 'zygosity' status of CHIP mutations and that future prognostication systems should take mutation 'zygosity' into account.


Asunto(s)
Hematopoyesis Clonal , Neoplasias Hematológicas , Humanos , Mutación , Mutación Puntual , Aberraciones Cromosómicas , Neoplasias Hematológicas/genética
18.
Cancer Res ; 84(7): 1101-1114, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285895

RESUMEN

Impairing the BET family coactivator BRD4 with small-molecule inhibitors (BETi) showed encouraging preclinical activity in treating acute myeloid leukemia (AML). However, dose-limiting toxicities and limited clinical activity dampened the enthusiasm for BETi as a single agent. BETi resistance in AML myeloblasts was found to correlate with maintaining mitochondrial respiration, suggesting that identifying the metabolic pathway sustaining mitochondrial integrity could help develop approaches to improve BETi efficacy. Herein, we demonstrated that mitochondria-associated lactate dehydrogenase allows AML myeloblasts to utilize lactate as a metabolic bypass to fuel mitochondrial respiration and maintain cellular viability. Pharmacologically and genetically impairing lactate utilization rendered resistant myeloblasts susceptible to BET inhibition. Low-dose combinations of BETi and oxamate, a lactate dehydrogenase inhibitor, reduced in vivo expansion of BETi-resistant AML in cell line and patient-derived murine models. These results elucidate how AML myeloblasts metabolically adapt to BETi by consuming lactate and demonstrate that combining BETi with inhibitors of lactate utilization may be useful in AML treatment. SIGNIFICANCE: Lactate utilization allows AML myeloblasts to maintain metabolic integrity and circumvent antileukemic therapy, which supports testing of lactate utilization inhibitors in clinical settings to overcome BET inhibitor resistance in AML. See related commentary by Boët and Sarry, p. 950.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Animales , Ratones , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ácido Láctico , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Lactato Deshidrogenasas , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular
20.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37546802

RESUMEN

The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA