Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Annu Rev Phytopathol ; 59: 311-332, 2021 08 25.
Article En | MEDLINE | ID: mdl-34030448

Diseases have a significant cost to agriculture. Findings from analyses of whole-genome sequences show great promise for informing strategies to mitigate risks from diseases caused by phytopathogens. Genomic approaches can be used to dramatically shorten response times to outbreaks and inform disease management in novel ways. However, the use of these approaches requires expertise in working with big, complex data sets and an understanding of their pitfalls and limitations to infer well-supported conclusions. We suggest using an evolutionary framework to guide the use of genomic approaches in epidemiology and diagnostics of plant pathogens. We also describe steps that are necessary for realizing these as standard approaches in disease surveillance.


Genomics , Plant Diseases , Molecular Epidemiology , Plants
2.
Front Microbiol ; 11: 1022, 2020.
Article En | MEDLINE | ID: mdl-32523572

Rhodococcus is a genus of Gram-positive bacteria with species that can cause growth deformations to a large number of plant species. This ability to cause disease is hypothesized to be dependent on a cluster of three gene loci on an almost 200 kb-sized linear plasmid. To reevaluate the roles of some of the genes in pathogenicity, we constructed and characterized deletion mutants of fasR and four fas genes. Findings confirmed that fasR, which encodes a putative transcriptional regulator, is necessary for pathogenesis. However, three of the fas genes, implicated in the metabolism of plant growth promoting cytokinins, are dispensable for the ability of the pathogen to cause disease. We also used long-read sequencing technology to generate high quality genome sequences for two phytopathogenic strains in which virulence genes are diverged in sequence and/or hypothesized to have recombined into the chromosome. Surprisingly, findings showed that the two strains carry extremely diverse virulence plasmids. Ortholog clustering identified only 12 genes present on all three virulence plasmids. Rhodococcus requires a small number of horizontally acquired traits to be pathogenic and the transmission of the corresponding genes, via recombination and conjugation, has the potential to rapidly diversify plasmids and bacterial populations.

3.
Elife ; 72018 05 08.
Article En | MEDLINE | ID: mdl-29737968

Randall et al., 2018 and Vereecke, 2018 have raised concerns about a paper we published (Savory et al., 2017). Here, we respond to those concerns.


Disease Management , Rhodococcus
5.
Elife ; 62017 12 12.
Article En | MEDLINE | ID: mdl-29231813

Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses.


Evolution, Molecular , Pistacia/microbiology , Plant Diseases/microbiology , Rhodococcus/genetics , Rhodococcus/pathogenicity , Disease Management , Gene Expression Regulation, Bacterial , Genes, Bacterial , Phylogeny , Pistacia/growth & development , Plasmids , Rhodococcus/growth & development , Virulence
6.
Phytopathology ; 107(9): 1062-1068, 2017 09.
Article En | MEDLINE | ID: mdl-28569126

Agrobacterium is a genus of soilborne gram-negative bacteria. Members carrying oncogenic plasmids can cause crown gall disease, which has significant economic costs, especially for the orchard and nursery industries. Early and rapid detection of pathogenic Agrobacterium spp. is key to the management of crown gall disease. To this end, we designed oligonucleotide primers and probes to target virD2 for use in a molecular diagnostic tool that relies on isothermal amplification and lateral-flow-based detection. The oligonucleotide tools were tested in the assay and evaluated for detection limit and specificity in detecting alleles of virD2. One set of primers that successfully amplified virD2 when used with an isothermal recombinase was selected. Both tested probes had detection limits in picogram amounts of DNA. Probe 1 could detect all tested pathogenic isolates that represented most of the diversity of virD2. Finally, the coupling of lateral-flow detection to the use of these oligonucleotide primers in isothermal amplification helped to reduce the onerousness of the process, and alleviated reliance on specialized tools necessary for molecular diagnostics. The assay is an advancement for the rapid molecular detection of pathogenic Agrobacterium spp.


Agrobacterium/isolation & purification , Nucleic Acid Amplification Techniques , Agrobacterium/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Phylogeny , Nicotiana/microbiology
7.
Am J Bot ; 104(9): 1299-1312, 2017 09.
Article En | MEDLINE | ID: mdl-29885243

PREMISE OF THE STUDY: To maximize benefits from symbiosis, legumes must limit physiological inputs into ineffective rhizobia that nodulate hosts without fixing nitrogen. The capacity of legumes to decrease the relative fitness of ineffective rhizobia-known as sanctions-has been demonstrated in several legume species, but its mechanisms remain unclear. Sanctions are predicted to work at the whole-nodule level. However, whole-nodule sanctions would make the host vulnerable to mixed-nodule infections, which have been demonstrated in the laboratory and observed in natural settings. Here, we present and test a cell-autonomous model of legume sanctions that can resolve this dilemma. METHODS: We analyzed histological and ultrastructural evidence of sanctions in two legume species, Acmispon strigosus and Lotus japonicus. For the former, we inoculated seedlings with rhizobia that naturally vary in their abilities to fix nitrogen. In the latter, we inoculated seedlings with near-isogenic strains that differ only in the ability to fix nitrogen. KEY RESULTS: In both hosts, plants inoculated with ineffective rhizobia exhibited evidence for a cell autonomous and accelerated program of senescence within nodules. In plants that received mixed inoculations, only the plant cells harboring ineffective rhizobia exhibited features consistent with programmed cell death, including collapsed vacuoles, ruptured symbiosomes, and bacteroids that are released into the cytosol. These features were consistently linked with ultrastructural evidence of reduced survival of ineffective rhizobia in planta. CONCLUSIONS: Our data suggest an elegant cell autonomous mechanism by which legumes can detect and defend against ineffective rhizobia even when nodules harbor a mix of effective and ineffective rhizobial genotypes.


Bradyrhizobium/growth & development , Lotus/physiology , Root Nodules, Plant/physiology , Lotus/microbiology , Lotus/ultrastructure , Models, Biological , Root Nodules, Plant/microbiology , Root Nodules, Plant/ultrastructure
8.
Mol Plant Microbe Interact ; 28(3): 298-309, 2015 Mar.
Article En | MEDLINE | ID: mdl-25372122

Pseudoperonospora cubensis is an obligate pathogen and causative agent of cucurbit downy mildew. To help advance our understanding of the pathogenicity of P. cubensis, we used RNA-Seq to improve the quality of its reference genome sequence. We also characterized the RNA-Seq dataset to inventory transcript isoforms and infer alternative splicing during different stages of its development. Almost half of the original gene annotations were improved and nearly 4,000 previously unannotated genes were identified. We also demonstrated that approximately 24% of the expressed genome and nearly 55% of the intron-containing genes from P. cubensis had evidence for alternative splicing. Our analyses revealed that intron retention is the predominant alternative splicing type in P. cubensis, with alternative 5'- and alternative 3'-splice sites occurring at lower frequencies. Representatives of the newly identified genes and predicted alternatively spliced transcripts were experimentally validated. The results presented herein highlight the utility of RNA-Seq for improving draft genome annotations and, through this approach, we demonstrate that alternative splicing occurs more frequently than previously predicted. In total, the current study provides evidence that alternative splicing plays a key role in transcriptome regulation and proteome diversification in plant-pathogenic oomycetes.


Alternative Splicing , Cucumis sativus/microbiology , Oomycetes/genetics , Plant Diseases/microbiology , Transcriptome , Base Sequence , Gene Library , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Introns/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Oomycetes/physiology , RNA Isoforms , Sequence Analysis, RNA , Sporangia
9.
PLoS One ; 9(7): e101996, 2014.
Article En | MEDLINE | ID: mdl-25010934

Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of three loci present on a linear plasmid, with the fas operon central to virulence. The Fas proteins synthesize, modify, and activate a mixture of growth regulating cytokinins, which cause a hormonal imbalance in plants, resulting in abnormal growth. We sequenced and compared the genomes of 20 isolates of Rhodococcus to gain insights into the mechanisms and evolution of virulence in these bacteria. Horizontal gene transfer was identified as critical but limited in the scale of virulence evolution, as few loci are conserved and exclusive to phytopathogenic isolates. Although the fas operon is present in most phytopathogenic isolates, it is absent from phytopathogenic isolate A21d2. Instead, this isolate has a horizontally acquired gene chimera that encodes a novel fusion protein with isopentyltransferase and phosphoribohydrolase domains, predicted to be capable of catalyzing and activating cytokinins, respectively. Cytokinin profiling of the archetypal D188 isolate revealed only one activate cytokinin type that was specifically synthesized in a fas-dependent manner. These results suggest that only the isopentenyladenine cytokinin type is synthesized and necessary for Rhodococcus phytopathogenicity, which is not consistent with the extant model stating that a mixture of cytokinins is necessary for Rhodococcus to cause leafy gall symptoms. In all, data indicate that only four horizontally acquired functions are sufficient to confer the trait of phytopathogenicity to members of the genetically diverse clade of Rhodococcus.


Genetic Loci/genetics , Genomics , Plants/microbiology , Rhodococcus/genetics , Rhodococcus/pathogenicity , Sequence Analysis , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conserved Sequence , Evolution, Molecular , Gene Fusion , Gene Transfer, Horizontal/genetics , Genome, Bacterial/genetics , Isopentenyladenosine/metabolism , Molecular Sequence Data , Operon/genetics , Plasmids/genetics , Polymorphism, Genetic , Rhodococcus/metabolism , Rhodococcus/physiology
10.
New Phytol ; 197(4): 1262-1275, 2013 Mar.
Article En | MEDLINE | ID: mdl-23301854

Fire blight is a destructive bacterial disease caused by Erwinia amylovora affecting plants in the family Rosaceae, including apple. Host resistance to fire blight is present mainly in accessions of Malus spp. and is thought to be quantitative in this pathosystem. In this study we analyzed the importance of the E. amylovora effector avrRpt2(EA) , a homolog of Pseudomonas syringae avrRpt2, for resistance of Malus × robusta 5 (Mr5). The deletion mutant E. amylovora Ea1189ΔavrRpt2(EA) was able to overcome the fire blight resistance of Mr5. One single nucleotide polymorphism (SNP), resulting in an exchange of cysteine to serine in the encoded protein, was detected in avrRpt2(EA) of several Erwinia strains differing in virulence to Mr5. E. amylovora strains encoding serine (S-allele) were able to overcome resistance of Mr5, whereas strains encoding cysteine (C-allele) were not. Allele specificity was also observed in a coexpression assay with Arabidopsis thaliana RIN4 in Nicotiana benthamiana. A homolog of RIN4 has been detected and isolated in Mr5. These results suggest a system similar to the interaction of RPS2 from A. thaliana and AvrRpt2 from P. syringae with RIN4 as guard. Our data are suggestive of a gene-for-gene relationship for the host-pathogen system Mr5 and E. amylovora.


Bacterial Proteins/physiology , Erwinia amylovora/physiology , Genes, Bacterial/physiology , Genes, Plant/physiology , Host-Pathogen Interactions/genetics , Malus/microbiology , Plant Proteins/physiology , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Disease Resistance/genetics , Intracellular Signaling Peptides and Proteins , Plant Diseases/microbiology , Plant Proteins/chemistry , Plant Proteins/genetics , Point Mutation , Polymorphism, Single Nucleotide , Sequence Alignment , Nicotiana/genetics
11.
PLoS One ; 7(4): e34954, 2012.
Article En | MEDLINE | ID: mdl-22545095

The oomycete pathogen, Pseudoperonospora cubensis, is the causal agent of downy mildew on cucurbits, and at present, no effective resistance to this pathogen is available in cultivated cucumber (Cucumis sativus). To better understand the host response to a virulent pathogen, we performed expression profiling throughout a time course of a compatible interaction using whole transcriptome sequencing. As described herein, we were able to detect the expression of 15,286 cucumber genes, of which 14,476 were expressed throughout the infection process from 1 day post-inoculation (dpi) to 8 dpi. A large number of genes, 1,612 to 3,286, were differentially expressed in pair-wise comparisons between time points. We observed the rapid induction of key defense related genes, including catalases, chitinases, lipoxygenases, peroxidases, and protease inhibitors within 1 dpi, suggesting detection of the pathogen by the host. Co-expression network analyses revealed transcriptional networks with distinct patterns of expression including down-regulation at 2 dpi of known defense response genes suggesting coordinated suppression of host responses by the pathogen. Comparative analyses of cucumber gene expression patterns with that of orthologous Arabidopsis thaliana genes following challenge with Hyaloperonospora arabidopsidis revealed correlated expression patterns of single copy orthologs suggesting that these two dicot hosts have similar transcriptional responses to related pathogens. In total, the work described herein presents an in-depth analysis of the interplay between host susceptibility and pathogen virulence in an agriculturally important pathosystem.


Cucumis sativus/genetics , Cucumis sativus/immunology , Gene Expression Regulation, Plant , Host-Parasite Interactions , Peronospora/physiology , Cucumis sativus/parasitology , Plant Diseases/parasitology , Transcriptome
12.
PLoS One ; 7(4): e35796, 2012.
Article En | MEDLINE | ID: mdl-22545137

Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, 'Vlaspik', and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576-6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host.


Cucumis sativus/parasitology , Host-Parasite Interactions , Peronospora/physiology , Plant Diseases/parasitology , Gene Expression Profiling , Peronospora/genetics , Peronospora/pathogenicity , RNA, Messenger/genetics , Transcriptome
13.
PLoS One ; 7(4): e34701, 2012.
Article En | MEDLINE | ID: mdl-22496844

Pseudoperonospora cubensis, an obligate oomycete pathogen, is the causal agent of cucurbit downy mildew, a foliar disease of global economic importance. Similar to other oomycete plant pathogens, Ps. cubensis has a suite of RXLR and RXLR-like effector proteins, which likely function as virulence or avirulence determinants during the course of host infection. Using in silico analyses, we identified 271 candidate effector proteins within the Ps. cubensis genome with variable RXLR motifs. In extending this analysis, we present the functional characterization of one Ps. cubensis effector protein, RXLR protein 1 (PscRXLR1), and its closest Phytophthora infestans ortholog, PITG_17484, a member of the Drug/Metabolite Transporter (DMT) superfamily. To assess if such effector-non-effector pairs are common among oomycete plant pathogens, we examined the relationship(s) among putative ortholog pairs in Ps. cubensis and P. infestans. Of 271 predicted Ps. cubensis effector proteins, only 109 (41%) had a putative ortholog in P. infestans and evolutionary rate analysis of these orthologs shows that they are evolving significantly faster than most other genes. We found that PscRXLR1 was up-regulated during the early stages of infection of plants, and, moreover, that heterologous expression of PscRXLR1 in Nicotiana benthamiana elicits a rapid necrosis. More interestingly, we also demonstrate that PscRXLR1 arises as a product of alternative splicing, making this the first example of an alternative splicing event in plant pathogenic oomycetes transforming a non-effector gene to a functional effector protein. Taken together, these data suggest a role for PscRXLR1 in pathogenicity, and, in total, our data provide a basis for comparative analysis of candidate effector proteins and their non-effector orthologs as a means of understanding function and evolutionary history of pathogen effectors.


Alternative Splicing , Fungal Proteins/genetics , Membrane Transport Proteins/genetics , Nicotiana/microbiology , Peronospora/genetics , Amino Acid Motifs , Amino Acid Sequence , Base Sequence , Cell Death , Evolution, Molecular , Fungal Proteins/biosynthesis , Membrane Transport Proteins/biosynthesis , Molecular Sequence Data , Peronospora/pathogenicity , Phytophthora/genetics , Phytophthora/metabolism , Phytophthora/pathogenicity , Up-Regulation
14.
Plant Signal Behav ; 6(8): 1114-6, 2011 Aug.
Article En | MEDLINE | ID: mdl-21758001

The biochemical and cellular function of NDR1 in plant immunity and defense signaling has long remained elusive. Herein, we describe a novel role for NDR1 in both pathogen perception and plant defense signaling, elucidated by exploring a broader, physiological role for NDR1 in general stress responses and cell wall adhesion. Based on our predictive homology modeling, coupled with a structure-function approach, we found that NDR1 shares a striking similarity to mammalian integrins, well-characterized for their role in mediating the interaction between the extracellular matrix and stress signaling. ndr1-1 mutant plants exhibit higher electrolyte leakage following pathogen infection, compared to wild type Col-0. In addition, we observed an altered plasmolysis phenotype, supporting a role for NDR1 in maintaining cell wall-plasma membrane adhesions through mediating fluid loss under stress. 


Arabidopsis Proteins/metabolism , Plant Diseases/immunology , Plant Immunity , Plants/immunology , Transcription Factors/metabolism , Integrins/metabolism , Models, Molecular , Plant Diseases/microbiology , Plant Physiological Phenomena , Signal Transduction , Structure-Activity Relationship
15.
Plant Physiol ; 156(1): 286-300, 2011 May.
Article En | MEDLINE | ID: mdl-21398259

Arabidopsis (Arabidopsis thaliana) NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a plasma membrane-localized protein, plays an essential role in resistance mediated by the coiled-coil-nucleotide-binding site-leucine-rich repeat class of resistance (R) proteins, which includes RESISTANCE TO PSEUDOMONAS SYRINGAE2 (RPS2), RESISTANCE TO PSEUDOMONAS SYRINGAE PV MACULICOLA1, and RPS5. Infection with Pseudomonas syringae pv tomato DC3000 expressing the bacterial effector proteins AvrRpt2, AvrB, and AvrPphB activates resistance by the aforementioned R proteins. Whereas the genetic requirement for NDR1 in plant disease resistance signaling has been detailed, our study focuses on determining a global, physiological role for NDR1. Through the use of homology modeling and structure threading, NDR1 was predicted to have a high degree of structural similarity to Arabidopsis LATE EMBRYOGENESIS ABUNDANT14, a protein implicated in abiotic stress responses. Specific protein motifs also point to a degree of homology with mammalian integrins, well-characterized proteins involved in adhesion and signaling. This structural homology led us to examine a physiological role for NDR1 in preventing fluid loss and maintaining cell integrity through plasma membrane-cell wall adhesions. Our results show a substantial alteration in induced (i.e. pathogen-inoculated) electrolyte leakage and a compromised pathogen-associated molecular pattern-triggered immune response in ndr1-1 mutant plants. As an extension of these analyses, using a combination of genetic and cell biology-based approaches, we have identified a role for NDR1 in mediating plasma membrane-cell wall adhesions. Taken together, our data point to a broad role for NDR1 both in mediating primary cellular functions in Arabidopsis through maintaining the integrity of the cell wall-plasma membrane connection and as a key signaling component of these responses during pathogen infection.


Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cell Membrane/metabolism , Cell Wall/metabolism , Plant Diseases/immunology , Transcription Factors/genetics , Arabidopsis/cytology , Arabidopsis/immunology , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Cell Adhesion , Disease Resistance , Electrolytes , Integrins , Models, Molecular , Multiprotein Complexes , Mutation , Plant Diseases/microbiology , Plant Leaves , Pseudomonas syringae/physiology , RNA, Plant/genetics , Signal Transduction , Stress, Physiological , Transcription Factors/metabolism
16.
Mol Plant Pathol ; 12(3): 217-26, 2011 Apr.
Article En | MEDLINE | ID: mdl-21355994

Pseudoperonospora cubensis[(Berkeley & M. A. Curtis) Rostovzev], the causal agent of cucurbit downy mildew, is responsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash. Although downy mildew has been a major issue in Europe since the mid-1980s, in the USA, downy mildew on cucumber has been successfully controlled for many years through host resistance. However, since the 2004 growing season, host resistance has been effective no longer and, as a result, the control of downy mildew on cucurbits now requires an intensive fungicide programme. Chemical control is not always feasible because of the high costs associated with fungicides and their application. Moreover, the presence of pathogen populations resistant to commonly used fungicides limits the long-term viability of chemical control. This review summarizes the current knowledge of taxonomy, disease development, virulence, pathogenicity and control of Ps. cubensis. In addition, topics for future research that aim to develop both short- and long-term control measures of cucurbit downy mildew are discussed. TAXONOMY: Kingdom Straminipila; Phylum Oomycota; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; Genus Pseudoperonospora; Species Pseudoperonospora cubensis. DISEASE SYMPTOMS: Angular chlorotic lesions bound by leaf veins on the foliage of cucumber. Symptoms vary on different cucurbit species and varieties, specifically in terms of lesion development, shape and size. Infection of cucurbits by Ps. cubensis impacts fruit yield and overall plant health. INFECTION PROCESS: Sporulation on the underside of leaves results in the production of sporangia that are dispersed by wind. On arrival on a susceptible host, sporangia germinate in free water on the leaf surface, producing biflagellate zoospores that swim to and encyst on stomata, where they form germ tubes. An appressorium is produced and forms a penetration hypha, which enters the leaf tissue through the stomata. Hyphae grow through the mesophyll and establish haustoria, specialized structures for the transfer of nutrients and signals between host and pathogen. CONTROL: Management of downy mildew in Europe requires the use of tolerant cucurbit cultivars in conjunction with fungicide applications. In the USA, an aggressive fungicide programme, with sprays every 5-7 days for cucumber and every 7-10 days for other cucurbits, has been necessary to control outbreaks and to prevent crop loss. USEFUL WEBSITES: http://www.daylab.plp.msu.edu/pseudoperonospora-cubensis/ (Day Laboratory website with research advances in downy mildew); http://veggies.msu.edu/ (Hausbeck Laboratory website with downy mildew news for growers); http://cdm.ipmpipe.org/ (Cucurbit downy mildew forecasting homepage); http://ipm.msu.edu/downymildew.htm (Downy mildew information for Michigan's vegetable growers).


Cucurbitaceae/microbiology , Peronospora/physiology , Plant Diseases/microbiology , Microbial Viability , Peronospora/classification , Peronospora/cytology , Peronospora/pathogenicity , Virulence
...