Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 19(2): 152-7, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22245966

RESUMEN

The HtrA protein family combines chaperone and protease activities and is essential for protein quality control in many organisms. Whereas the mechanisms underlying the proteolytic function of HtrA proteins are well characterized, their chaperone activity remains poorly understood. Here we describe cryo-EM structures of Escherichia coli DegQ in its 12- and 24-mer states in complex with model substrates, providing a structural model of HtrA chaperone action. Up to six lysozyme substrates bind inside the DegQ 12-mer cage and are visualized in a close-to-native state. An asymmetric reconstruction reveals the binding of a well-ordered lysozyme to four DegQ protomers. DegQ PDZ domains are located adjacent to substrate density and their presence is required for chaperone activity. The substrate-interacting regions appear conserved in 12- and 24-mer cages, suggesting a common mechanism of chaperone function.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Chaperonas Moleculares/ultraestructura , Muramidasa/química , Muramidasa/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Serina Endopeptidasas/ultraestructura
2.
J Biol Chem ; 286(35): 30680-30690, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21685389

RESUMEN

To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/fisiología , Serina Endopeptidasas/fisiología , Sitio Alostérico , Proteínas Bacterianas/metabolismo , Calorimetría/métodos , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X/métodos , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/metabolismo , Concentración de Iones de Hidrógeno , Conformación Molecular , Proteínas Periplasmáticas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Serina Proteasas/química , Termodinámica
3.
Nat Struct Mol Biol ; 17(7): 844-52, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20581825

RESUMEN

HtrA proteases are tightly regulated proteolytic assemblies that are essential for maintaining protein homeostasis in extracytosolic compartments. Though HtrA proteases have been characterized in detail, their precise molecular mechanism for switching between different functional states is still unknown. To address this, we carried out biochemical and structural studies of DegP from Escherichia coli. We show that effector-peptide binding to the PDZ domain of DegP induces oligomer conversion from resting hexameric DegP6 into proteolytically active 12-mers and 24-mers (DegP12/24). Moreover, our data demonstrate that a specific protease loop (L3) functions as a conserved molecular switch of HtrA proteases. L3 senses the activation signal-that is, the repositioned PDZ domain of substrate-engaged DegP12/24 or the binding of allosteric effectors to regulatory HtrA proteases such as DegS-and transmits this information to the active site. Implications for protein quality control and regulation of oligomeric enzymes are discussed.


Asunto(s)
Escherichia coli/enzimología , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas de Choque Térmico/antagonistas & inhibidores , Isoflurofato/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Dominios PDZ , Péptidos/química , Péptidos/metabolismo , Proteínas Periplasmáticas/antagonistas & inhibidores , Unión Proteica , Multimerización de Proteína , Especificidad por Sustrato
4.
Curr Opin Struct Biol ; 20(2): 253-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20188538

RESUMEN

Structure-function analysis of DegP revealed a novel mechanism for protease and chaperone regulation. Binding of unfolded proteins induces the oligomer reassembly from the resting hexamer (DegP6) into the functional protease-chaperone DegP12/24. The newly formed cage exhibits the characteristics of a proteolytic folding chamber, shredding those proteins that are severely misfolded while stabilizing and protecting proteins present in their native state. Isolation of native DegP complexes with folded outer membrane proteins (OMPs) highlights the importance of DegP in OMP biogenesis. The encapsulated OMP beta-barrel is significantly stabilized in the hydrophobic chamber of DegP12/24 and thus DegP seems to employ a reciprocal mechanism to those chaperones assisting the folding of water soluble proteins via polar interactions. In addition, we discuss in this review similarities to other complex proteolytic machines that, like DegP, are under control of a substrate-induced or stress-induced oligomer conversion.


Asunto(s)
Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Proteínas Periplasmáticas/química , Serina Endopeptidasas/química , Animales , Cristalografía por Rayos X , Dimerización , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/metabolismo , Conformación Proteica , Pliegue de Proteína , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
5.
Proc Natl Acad Sci U S A ; 105(22): 7702-7, 2008 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-18505836

RESUMEN

Aberrant proteins represent an extreme hazard to cells. Therefore, molecular chaperones and proteases have to carry out protein quality control in each cellular compartment. In contrast to the ATP-dependent cytosolic proteases and chaperones, the molecular mechanisms of extracytosolic factors are largely unknown. To address this question, we studied the protease function of DegP, the central housekeeping protein in the bacterial envelope. Our data reveal that DegP processively degrades misfolded proteins into peptides of defined size by employing a molecular ruler comprised of the PDZ1 domain and the proteolytic site. Furthermore, peptide binding to the PDZ domain transforms the resting protease into its active state. This allosteric activation mechanism ensures the regulated and rapid elimination of misfolded proteins upon folding stress. In comparison to the cytosolic proteases, the regulatory features of DegP are established by entirely different mechanisms reflecting the convergent evolution of an extracytosolic housekeeping protease.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Dominios PDZ , Proteínas Periplasmáticas/química , Serina Endopeptidasas/química , Regulación Alostérica , Secuencia de Aminoácidos , Citosol/enzimología , Activación Enzimática , Hidrólisis , Datos de Secuencia Molecular , Oligopéptidos/química , Pliegue de Proteína
6.
Nature ; 453(7197): 885-90, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18496527

RESUMEN

All organisms have to monitor the folding state of cellular proteins precisely. The heat-shock protein DegP is a protein quality control factor in the bacterial envelope that is involved in eliminating misfolded proteins and in the biogenesis of outer-membrane proteins. Here we describe the molecular mechanisms underlying the regulated protease and chaperone function of DegP from Escherichia coli. We show that binding of misfolded proteins transforms hexameric DegP into large, catalytically active 12-meric and 24-meric multimers. A structural analysis of these particles revealed that DegP represents a protein packaging device whose central compartment is adaptable to the size and concentration of substrate. Moreover, the inner cavity serves antagonistic functions. Whereas the encapsulation of folded protomers of outer-membrane proteins is protective and might allow safe transit through the periplasm, misfolded proteins are eliminated in the molecular reaction chamber. Oligomer reassembly and concomitant activation on substrate binding may also be critical in regulating other HtrA proteases implicated in protein-folding diseases.


Asunto(s)
Escherichia coli/enzimología , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Choque Térmico/ultraestructura , Modelos Moleculares , Chaperonas Moleculares/ultraestructura , Proteínas Periplasmáticas/ultraestructura , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Serina Endopeptidasas/ultraestructura , Relación Estructura-Actividad
7.
Genes Dev ; 21(20): 2659-70, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17938245

RESUMEN

The unfolded protein response of Escherichia coli is triggered by the accumulation of unassembled outer membrane proteins (OMPs) in the cellular envelope. The PDZ-protease DegS recognizes these mislocalized OMPs and initiates a proteolytic cascade that ultimately leads to the sigmaE-driven expression of a variety of factors dealing with folding stress in the periplasm and OMP assembly. The general features of how OMPs activate the protease function of DegS have not yet been systematically addressed. Furthermore, it is unknown how the PDZ domain keeps the protease inactive in the resting state, which is of crucial importance for the functioning of the entire sigmaE stress response. Here we show in atomic detail how DegS is able to integrate the information of distinct stress signals that originate from different OMPs containing a -x-Phe C-terminal motif. A dedicated loop of the protease domain, loop L3, serves as a versatile sensor for allosteric ligands. L3 is capable of interacting differently with ligands but reorients in a conserved manner to activate DegS. Our data also indicate that the PDZ domain directly inhibits protease function in the absence of stress signals by wedging loop L3 in a conformation that ultimately disrupts the proteolytic site. Thus, the PDZ domain and loop L3 of DegS define a novel molecular switch allowing strict regulation of the sigmaE stress response system.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Eliminación de Secuencia , Factor sigma/química , Factor sigma/genética , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/genética
8.
J Biol Chem ; 280(30): 27904-13, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15890652

RESUMEN

Here we report the crystal structure of YqjM, a homolog of Old Yellow Enzyme (OYE) that is involved in the oxidative stress response of Bacillus subtilis. In addition to the oxidized and reduced enzyme form, the structures of complexes with p-hydroxybenzaldehyde and p-nitrophenol, respectively, were solved. As for other OYE family members, YqjM folds into a (alpha/beta)8-barrel and has one molecule of flavin mononucleotide bound non-covalently at the COOH termini of the beta-sheet. Most of the interactions that control the electronic properties of the flavin mononucleotide cofactor are conserved within the OYE family. However, in contrast to all members of the OYE family characterized to date, YqjM exhibits several unique structural features. For example, the enzyme exists as a homotetramer that is assembled as a dimer of catalytically dependent dimers. Moreover, the protein displays a shared active site architecture where an arginine finger (Arg336) at the COOH terminus of one monomer extends into the active site of the adjacent monomer and is directly involved in substrate recognition. Another remarkable difference in the binding of the ligand in YqjM is represented by the contribution of the NH2-terminal Tyr28 instead of a COOH-terminal tyrosine in OYE and its homologs. The structural information led to a specific data base search from which a new class of OYE oxidoreductases was identified that exhibits a strict conservation of active site residues, which are critical for this subfamily, most notably Cys26, Tyr28, Lys109, and Arg336. Therefore, YqjM is the first representative of a new bacterial subfamily of OYE homologs.


Asunto(s)
Flavoproteínas/química , Secuencia de Aminoácidos , Arginina/química , Bacillus subtilis/metabolismo , Benzaldehídos/farmacología , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Dimerización , Electrones , Escherichia coli/metabolismo , Flavoproteínas/clasificación , Flavoproteínas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Nitrofenoles/farmacología , Sistemas de Lectura Abierta , Estrés Oxidativo , Oxidorreductasas/metabolismo , Filogenia , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tirosina/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...