Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1867(12): 130486, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813201

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS: Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS: Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION: Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE: Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt , Simulación del Acoplamiento Molecular , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Apoptosis , Gemcitabina , Antineoplásicos/farmacología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Receptores ErbB
2.
Pathol Res Pract ; 248: 154678, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454493

RESUMEN

Polo-like kinase 1 (PLK1) is an essential mitotic checkpoint protein that plays a key role in cell cycle division. Overexpression of PLK1 has been associated with poor prognosis in various cancers. Cholangiocarcinoma (CCA) is a lethal bile duct cancer and the current treatments in inoperable patients have not been satisfactory. In order to develop novel targeted therapies, we investigated the efficacy of BI6727 (volasertib) and GSK461364A, polo-like kinase 1 (PLK1) inhibitors in KKU-100 and KKU-213A CCA cell lines. PLK1 expression was significantly up-regulated in CCA cases compared with normal tissues based on the results derived from GEPIA. Western blot results exhibited PLK1 protein expression in both CCA cell lines. Molecular dynamics simulations and free energy calculations based on MM/GBSA method revealed that BI6727-PLK1 and GSK461364A-PLK1 complexes were stable in an aqueous environment, and their complexation was mainly driven by Van der Waals interaction. BI6727 and GSK461364A clearly suppressed CCA cell proliferation and induced G2/M arrest, accompanied with upregulation of cyclin B1 and phosphorylated Histone H3 at Ser10 (pS10H3), specific markers of mitosis. Furthermore, both compounds triggered mitotic catastrophe followed by cell apoptosis via activation of PARP and Caspase 3, as well as downregulation of Mcl-1 anti-apoptotic protein in both CCA cell lines. In conclusion, pharmacologic PLK1 inhibition by BI6727 and GSK461364A blocked survival of CCA cells by several mechanisms. Our study provides evidence that BI6727 and GSK461364A could be alternative drugs and have potential implications at the clinical level for CCA therapy.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Proliferación Celular , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Quinasa Tipo Polo 1
3.
Cancer Sci ; 114(8): 3230-3246, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37026527

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive malignant tumor of bile duct epithelia. Recent evidence suggests the impact of cancer stem cells (CSC) on the therapeutic resistance of CCA; however, the knowledge of CSC in CCA is limited due to the lack of a CSC model. In this study, we successfully established a stable sphere-forming CCA stem-like cell, KKU-055-CSC, from the original CCA cell line, KKU-055. The KKU-055-CSC exhibits CSC characteristics, including: (1) the ability to grow stably and withstand continuous passage for a long period of culture in the stem cell medium, (2) high expression of stem cell markers, (3) low responsiveness to standard chemotherapy drugs, (4) multilineage differentiation, and (5) faster and constant expansive tumor formation in xenograft mouse models. To identify the CCA-CSC-associated pathway, we have undertaken a global proteomics and functional cluster/network analysis. Proteomics identified the 5925 proteins in total, and the significantly upregulated proteins in CSC compared with FCS-induced differentiated CSC and its parental cells were extracted. Network analysis revealed that high mobility group A1 (HMGA1) and Aurora A signaling through the signal transducer and activator of transcription 3 pathways were enriched in KKU-055-CSC. Knockdown of HMGA1 in KKU-055-CSC suppressed the expression of stem cell markers, induced the differentiation followed by cell proliferation, and enhanced sensitivity to chemotherapy drugs including Aurora A inhibitors. In silico analysis indicated that the expression of HMGA1 was correlated with Aurora A expressions and poor survival of CCA patients. In conclusion, we have established a unique CCA stem-like cell model and identified the HMGA1-Aurora A signaling as an important pathway for CSC-CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Ratones , Animales , Proteína HMGA1a , Colangiocarcinoma/metabolismo , Células Madre Neoplásicas/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Proliferación Celular
4.
Expert Rev Anticancer Ther ; 23(5): 517-530, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37052887

RESUMEN

INTRODUCTION: Cholangiocarcinoma (CCA) is an aggressive cancer arising from any part of the biliary system. Effective treatment of CCA remains limited, resulting in the poor overall prognosis of patients. The effective prognostic biomarkers for CCA remain lacking, and most are at the research level. AREAS COVERED: The incidences of CCAs, classification, genetic and molecular characteristics, and distinct clinical outcomes in each subtype are introduced. The prognostic markers currently used in clinical practice are reviewed. Studies of biomarkers in defining the aggressiveness of CCA, identifying patients with a potential tumor recurrence, and predicting the survival time, are reviewed. Emerging biomarkers discovered from advanced high throughput technology over the past 5 years are updated and summarized. Finally, in-depth and critical revision on the prognostic biomarkers for CCA reported from various sources of specimens, e.g. tissues, blood, bile, etc. are discussed. Conclusion: Many prognostic biomarkers for CCA have been proposed and hold promising clinical value. However, these markers are rarely used in the real clinical world due to several factors. Understanding the roles and importance of these prognostic markers may fundamentally impact the therapeutic management of CCA, and hopefully, improve the development of custom and patient-directed therapies for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Pronóstico , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/terapia , Neoplasias de los Conductos Biliares/genética , Recurrencia Local de Neoplasia/patología , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/terapia , Conductos Biliares Intrahepáticos , Biomarcadores , Biomarcadores de Tumor/genética
5.
PeerJ ; 11: e14883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883059

RESUMEN

Background: Intrahepatic cholangiocarcinoma (iCCA) is a cancer arising from intrahepatic bile duct epithelium. An iCCA incidence is increasing worldwide; however, the outcome of the disease is dismal. The linkage between chronic inflammation and iCCA progression is well established, but the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) remain unrevealed. Thus, a better understanding of GM-CSF functions in CCA may provide an alternative approach to CCA treatment. Methods: Differential GM-CSF and GM-CSFRα mRNA expressions in CCA tissues were investigated by Gene Expression Profiling Interactive Analysis (GEPIA) based on The Cancer Genome Atlas (TCGA) database. The protein expressions and localizations of GM-CSF and its cognate receptor (GM-CSFRα) in iCCA patients' tissues were demonstrated by the immunohistochemistry (IHC) techniques. The survival analyses were performed using Kaplan-Meier survival analysis with log-rank test and Cox proportional hazard regression model for multivariate analysis. The GM-CSF productions and GM-CSFRα expressions on CCA cells were assessed by ELISA and flow cytometry. The effects of GM-CSF on CCA cell proliferation and migration were evaluated after recombinant human GM-CSF treatment. The relationship between GM-CSF or GM-CSFRα level and related immune cell infiltration was analyzed using the Tumor Immune Estimation Resource (TIMER). Results: GEPIA analysis indicated GM-CSF and GM-CSFRα expressions were higher in CCA tissues than in normal counterparts, and high GM-CSFRα was related to the longer disease-free survival of the patients (p < 0.001). IHC analysis revealed that CCA cells differentially expressed GM-CSF, while GM-CSFRα was expressed on cancer-infiltrating immune cells. The patient whose CCA tissue contained high GM-CSF expressed CCA, and moderate to dense GM-CSFRα-expressing immune cell infiltration (ICI) acquired longer overall survival (OS) (p = 0.047), whereas light GM-CSFRα-expressing ICI contributed to an increased hazard ratio (HR) to 1.882 (95% CI [1.077-3.287]; p = 0.026). In non-papillary subtype, an aggressive CCA subtype, patients with light GM-CSFRα-expressing ICI had shorter median OS (181 vs. 351 days; p = 0.002) and the HR was elevated to 2.788 (95% CI [1.299-5.985]; p = 0.009). Additionally, TIMER analysis demonstrated GM-CSFRα expression was positively correlated with neutrophil, dendritic cell, and CD8+ T cell infiltrations, though it was conversely related to M2-macrophage and myeloid-derived suppressor cell infiltration. However, the direct effects of GM-CSF on CCA cell proliferation and migration were not observed in the current study. Conclusions: Light GM-CSFRα-expressing ICI was an independent poor prognostic factor for iCCA patients. Anti-cancer functions of GM-CSFRα-expressing ICI were suggested. Altogether, the benefits of acquired GM-CSFRα-expressing ICI and GM-CSF for CCA treatment are proposed herein and require elucidation.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Colangiocarcinoma/genética , Epitelio , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166694, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972768

RESUMEN

Cholangiocarcinoma (CCA), a cancer of the biliary tract, is a significant health problem in Thailand. Reprogramming of cellular metabolism and upregulation of lipogenic enzymes have been revealed in CCA, but the mechanism is unclear. The current study highlighted the importance of acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme in de novo lipogenesis, on CCA migration. ACC1 expression in human CCA tissues was determined by immunohistochemistry. The results demonstrated that increased ACC1 was related to the shorter survival of CCA patients. Herein, ACC1-deficient cell lines (ACC1-KD) were generated by the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (cas9) system and were used for the comparative study. The ACC1 levels in ACC1-KD were 80-90 % lower than in parental cells. Suppression of ACC1 significantly reduced intracellular malonyl-CoA and neutral lipid contents. Two-fold growth retardation and 60-80 % reduced CCA cell migration and invasion were observed in ACC1-KD cells. The reduced 20-40 % of intracellular ATP levels, AMPK activation, lowered NF-κB p65 nuclear translocation, and snail expression were emphasized. Migration of ACC1-KD cells was restored by supplementation with palmitic acid and malonyl-CoA. Altogether, the importance of rate-limiting enzyme in de novo fatty acid synthesis, ACC1, and AMPK-NF-κB-snail axis on CCA progression was suggested herein. These might be the novel targets for CCA drug design. (ACC1, AMPK, Cholangiocarcinoma, De novo lipogenesis, NF-κB, Palmitic acid).


Asunto(s)
Acetil-CoA Carboxilasa , Colangiocarcinoma , Humanos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas Quinasas Activadas por AMP , FN-kappa B , Ácido Palmítico , Factores de Transcripción de la Familia Snail
7.
Am J Cancer Res ; 12(9): 4140-4159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225633

RESUMEN

Cholangiocarcinoma (CCA) is a lethal cancer in that the incidence is now increasing worldwide. N-acetylgalactosaminyltransferase 5 (GALNT5), an enzyme that initiates the first step of mucin type-O glycosylation, has been reported to promote aggressiveness of CCA cells via the epithelial to the mesenchymal transition (EMT) process, and Akt/Erk activation. In this study, the clinical and biological relevance of GALNT5 and the molecular mechanisms by which GALNT5 modulated EGFR in promoting CCA progression were examined. Using publicly available datasets, upregulation of GALNT5 in patient CCA tissues and its correlation with EGFR expression was noted. High levels of GALNT5 were significantly associated with the short survival of patients, suggesting a prognostic marker of GALNT5 for CCA. GALNT5 modulated EGFR expression as shown in CCA cell lines. Upregulation of GALNT5 significantly increased EGFR mRNA and protein in GALNT5 overexpressing cells, whereas suppression of GALNT5 expression gave the opposite results. The molecular dynamics simulations and MM/PB(GB)SA-based free energy calculations showed that O-glycosylation on the EGFR extracellular domain enhanced the structural stability, compactness, and H-bond formation of the EGF/GalNAc-EGFR complex compared with those of EGF/EGFR. This stabilized the growth factor binding site and fostered stronger interactions between EGF and EGFR. Using the EGF-induced EGFR activation model, GALNT5 was shown to mediate EGFR stability via a decreased rate of EGFR degradation and enhanced EGFR activity by increasing the binding affinity of EGF/EGFR that consequently increasing the activation of EGFR and its downstream effectors Akt and Erk. In summary, GALNT5 was upregulated in CCA tissues and associated with a worse prognosis. The study identified for the first time the impacts of GALNT5 on EGFR activity by increasing: 1) EGFR expression via a transcriptional-dependent mechanism, 2) EGFR stability by reducing EGFR degradation, and 3) EGFR activation through an increased binding affinity of EGF/EGFR which all together fostered the activation of EGFR. These results expanded the understanding of the molecular mechanism of how GALNT5 impacted CCA progression and suggested GALNT5 as a new target for therapeutic intervention against metastatic CCA.

8.
FASEB J ; 36(7): e22345, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635715

RESUMEN

High mobility group nucleosome-binding protein 3 (HMGN3), a member of the HMGN family, modulates the structure of chromatin and regulates transcription through transcription factors. HMGN3 has been implicated in the development of various cancers; however, the underlying mechanisms remain unclear. We herein demonstrated that the high expression of HMGN3 correlated with the metastasis of liver fluke infection-induced cholangiocarcinoma (CCA) in patients in northeastern Thailand. The knockdown of HMGN3 in CCA cells significantly impaired the oncogenic properties of colony formation, migration, and invasion. HMGN3 inhibited the expression of and blocked the intracellular polarities of epithelial regulator genes, such as the CDH1/E-cadherin and TJAP1 genes in CCA cells. A chromatin immunoprecipitation sequencing analysis revealed that HMGN3 required the transcription factor SNAI2 to bind to and repress the expression of epithelial regulator genes, at least in part, due to histone deacetylases (HDACs), the pharmacological inhibition of which reactivated these epithelial regulators in CCA, leading to impairing the cell migration capacity. Therefore, the overexpression of HMGN3 represses the transcription of and blocks the polarities of epithelial regulators in CCA cells in a manner that is dependent on the SNAI2 gene and HDACs.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Regulación de la Expresión Génica , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Eur J Pharmacol ; 922: 174899, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337815

RESUMEN

AIM: NMS-P715 is a potent inhibitor of monopolar spindle 1 (MPS1) mitotic checkpoint kinase. Overexpression of MPS1 is associated with short survival times in patients with cholangiocarcinoma (CCA). This study investigated the anti-cancer effects of NMS-P715 in human CCA cell lines. MAIN METHODS: KKU-100 and KKU-213A CCA cell lines were treated with NMS-P715 and cell viability was determined using MTT and colony formation assays. Inhibitory effects of NMS-P715 on cell cycle and apoptosis were evaluated using flow cytometry. Expression of underlying mechanism-related proteins was examined by Western blotting. Mitotic catastrophe was assessed by counting abnormal nuclei. Transwell assays were used to examine cell migration and invasion. KEY FINDINGS: Molecular docking showed that the NMS-P715/MPS1 complex was driven by an induced-fit mechanism. We provide new evidence that NMS-P715 potently inhibited cell proliferation and colony formation in both CCA cell lines. This was accompanied by induction of G2/M arrest and the consequent induction of mitotic catastrophe, a process that occurs during defective mitosis. The recent study showed that NMS-P715 activated caspase-dependent apoptosis and autophagosome formation with an increase of LC3 A/B-II protein expression in CCA cell lines. NMS-P715 also greatly impeded cell migration and invasion in CCA cell lines. The combination of NMS-P715 and gemcitabine or cisplatin showed synergistic effects on CCA cell proliferation. SIGNIFICANCE: This study revealed for the first time that NMS-P715 is a promising candidate for combating CCA owing via multiple actions and may be suitable for further development in a clinical study.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Fasciola hepatica , Animales , Apoptosis , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Simulación del Acoplamiento Molecular , Proteínas Serina-Treonina Quinasas , Pirazoles , Quinazolinas
10.
Asian Pac J Cancer Prev ; 23(2): 715-721, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35225485

RESUMEN

OBJECTIVE: Annexin A1 (ANXA1) is a calcium-dependent phospholipid-binding protein which contributes to proliferation, cancer progression and metastasis. Overexpression of ANXA1 is closely associated with metastasis in numerous types of cancer. Cholangiocarcinoma (CCA) is a bile-duct cancer which has high rates of metastasis. Previously, we demonstrated up-regulation of ANXA1 in a highly metastatic CCA cell line (KKU-213AL5). Here, we investigated the functions of ANXA1 in the progression of CCA cell lines and evaluated its clinical impacts in human CCA tissues.  Methods: Effects of ANXA1 on metastatic potential of CCA cell lines were evaluated using cell-proliferation, clonogenic, migration and invasion assays. The expression of ANXA1 in 44 intrahepatic human CCA tissues was investigated using immunohistochemistry (IHC). The association of ANXA1 with clinicopathological features of CCA patients was analyzed. RESULTS: Silencing of ANXA1 expression using siRNA significantly decreased cell proliferation, colony formation, cell migration and invasion in the KKU-213AL5 cell line. IHC results showed low expression of ANXA1 in normal bile ducts in the non-tumor area. In contrast, high expression of ANXA1 in human CCA tissues was associated with advanced tumor stage, tumor size and presence of lymph-node metastasis. CONCLUSION: These findings strongly imply that ANXA1 contributes to the progression of CCA. ANXA1 can serve as a potential prognostic marker for CCA. Ablation of ANXA1 action may be an alternative strategy to prevent metastasis of CCA.


Asunto(s)
Anexina A1/genética , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Metástasis de la Neoplasia/genética , Conductos Biliares/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Inmunohistoquímica , Metástasis Linfática/genética , Invasividad Neoplásica/genética , Pronóstico
11.
Nutr Cancer ; 74(5): 1734-1744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34353198

RESUMEN

Diabetes mellitus (DM) is associated with an increased risk and progression of cholangiocarcinoma (CCA). High glucose underlying the association between DM and CCA by modulating the intracellular signaling has been demonstrated. However, the effects of DM and hyperglycemia on cell cycle machineries and progression of CCA remain elucidated. CCA cells, KKU-213A and KKU-213B were cultured in normal (NG, 5.6 mM) or high glucose (HG, 25 mM) resembling euglycemia and hyperglycemia. Western blotting was used to determine expressions of cell cycle machineries in CCA cells. The expression of cyclin A in CCA tissues from patients with or without hyperglycemia was determined by immunohistochemistry. Pan-cyclin dependent kinases (CDKs) inhibitor and silencing of cyclin A expression were investigated as a possible modality targeting CCA treatment in patients with DM. High glucose induced expression of cell cycle machinery proteins in both CCA cells. Among these, cyclin A was consistently and significantly upregulated. Nuclear cyclin A was significantly increased in tumor tissues from CCA patients with hyperglycemia and was significantly associated with post-operative survival of shorter than 5 mo. Silencing cyclin A expression sensitized CCA cells to pan-CDKs inhibitor, suggesting the combined treatment as an alternative approach for treatment of CCA patients with DM.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Diabetes Mellitus , Hiperglucemia , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Ciclina A/metabolismo , Ciclina A/farmacología , Ciclinas/metabolismo , Glucosa/farmacología , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Regulación hacia Arriba
12.
Life Sci ; 286: 120072, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688691

RESUMEN

AIMS: 5-Fluorouracil (5-FU), a thymidylate synthase (TS) inhibitor, has been used as the first-line chemotherapeutic drug for cholangiocarcinoma (CCA). The side effects and drug resistance have developed the limits of the clinical application of 5-FU in CCA treatment. Upregulation of Forkhead box M1 (FOXM1) and TS were shown to play a significant role in 5-FU resistance. In this study, the effect of Siomycin A (SioA), a FOXM1 inhibitor, on enhancing 5-FU cytotoxicity and reversing 5-FU resistance in CCA cell lines were demonstrated. MAIN METHODS: Human CCA cell lines, KKU-100 and KKU-213A were used. Cell viability was determined using MTT assay. Expression of FOXM1 and TS proteins were determined using Western blotting. FOXM1 mRNA expression was quantitated using real-time PCR. The combination and dose reduction (DRI) were analyzed according to the Chou and Talalay method. KEY FINDING: Single drug treatment of 5-FU and SioA effectively inhibited CCA cell growth in dose and time dependent fashions. The two CCA cell lines had different responses to 5-FU but exhibited similar sensitivity to SioA. FOXM1 and TS expression were increased in the 5-FU treated cells but were suppressed in the SioA treated cells. A direct binding of SioA, to TS and 5,10-methylene-tetrahydrofolate as an inactive ternary complex was simulated. The combined treatment of 5-FU with SioA showed a synergistic effect with a high DRI and restored 5-FU sensitivity in the 5-FU resistant cells. SIGNIFICANCE: Targeting FOXM1 using SioA in combination with 5-FU might be a strategy to overcome the 5-FU resistance in CCA.


Asunto(s)
Colangiocarcinoma/tratamiento farmacológico , Péptidos/farmacología , Timidilato Sintasa/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/efectos de los fármacos , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colangiocarcinoma/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Proteína Forkhead Box M1/antagonistas & inhibidores , Proteína Forkhead Box M1/metabolismo , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Péptidos/metabolismo , Timidilato Sintasa/fisiología
13.
Anticancer Res ; 41(7): 3389-3400, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34230134

RESUMEN

BACKGROUND/AIM: Cholangiocarcinoma (CCA), a biliary cancer, is a health problem worldwide. The major problem in CCA treatment presents limited options. To date, targeting cancer metabolism is a promising anti-cancer strategy. To elucidate the functional importance of lipid metabolism in CCA, de novo lipogenesis was inhibited using 5-(tetradecyloxy)-2-furoic acid (TOFA), an acetyl CoA carboxylase inhibitor. MATERIALS AND METHODS: Anti-proliferative effects of TOFA were determined both in vitro and in vivo. Its inhibitory effect on cell-cycle and apoptosis was investigated by flow cytometry and western blot analysis of relevant markers. RESULTS: TOFA inhibited CCA cell growth, induced cell-cycle progression accompanied by apoptosis in a dose-dependent manner. Induction of p21, and caspase-3, -8, and -9 cleavages, while down-regulation of cyclin B1 and cyclin D1 were observed in TOFA-treated cells. The therapeutic potential was demonstrated in vivo. CONCLUSION: De novo lipogensis is essential for CCA cell growth and is an alternative target for CCA treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/tratamiento farmacológico , Furanos/farmacología , Acetil-CoA Carboxilasa/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Regulación hacia Abajo/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos
14.
Heliyon ; 7(4): e06846, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33997388

RESUMEN

Forkhead box M1 (FOXM1) is a transcriptional factor which plays an important role in oncogenesis. Four FOXM1 isoforms, FOXM1a, FOXM1b, FOXM1c and FOXM1d, are known so far. Different FOXM1 isoforms influence progression of cancer in different cancer types. In this study, the FOXM1c isoform and its impact in cholangiocarcinoma (CCA) was identified. FOXM1c was found to be the predominant isoform in patient-CCA tissues and cell lines. Detection of FOXM1c expression in CCA tissues reflected the worse prognosis of the patients, namely the advanced stage and shorter survival. Suppression of FOXM1 expression using siRNA considerably reduced migration and invasion abilities of CCA cell lines. RNA sequencing analysis revealed claudin-1 as a target of FOXM1. FOXM1 exhibited a negative correlation with claudin-1 expression which was demonstrated in patient CCA tissues and cell lines. FOXM1 may be a potential target for therapeutic treatment of the metastatic CCA.

15.
Cancers (Basel) ; 13(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672838

RESUMEN

Cholangiocarcinoma (CCA) is the second most common type of hepatic cancer. In east and southeast Asia, intrahepatic CCA is caused predominantly by infection of Opisthorchis viverrini and Clonorchis sinensis, two species of parasitic liver flukes. In this review, we present molecular evidence that liver fluke-associated CCAs have enhanced features of epithelial-mesenchymal transition (EMT) in bile duct epithelial cells (cholangiocytes) and that some of those features are associated with mis-regulation at the epigenetic level. We hypothesize that both direct and indirect mechanisms underlie parasitic infection-induced EMT in CCA.

16.
PeerJ ; 9: e10637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505802

RESUMEN

Reversine is a selective inhibitor of mitotic kinase monopolar spindle 1 (MPS1) and has been reported as an anticancer agent in various cancers. The effects of reversine on bile duct cancer, cholangiocarcinoma (CCA), a lethal cancer in Northeastern Thailand, were investigated. This study reports that reversine inhibited cell proliferation of CCA cell lines in dose- and time-dependent manners but had less inhibitory effect on an immortalized cholangiocyte cell line. Reversine also triggered apoptotic cell death by decreasing anti-apoptotic proteins, Bcl-XL and Mcl-1, increasing Bax pro-apoptotic protein and activating caspase-3 activity. Moreover, reversine induced autophagic cell death by increasing LC3-II and Beclin 1 while decreasing p62. Reversine activated autophagy via the AKT signaling pathway. Additionally, this study demonstrated for the first time that reversine could diminish the expression of Hypoxia-Inducible Factor 1- alpha (HIF-1α) and glucose transporter 1 (GLUT1), resulting in a reduction of glucose uptake and energy production in CCA cell lines. These findings suggest that reversine could be a good candidate as an alternative or supplementary drug for CCA treatment.

17.
Biomedicines ; 9(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450849

RESUMEN

Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium. The major problems of this cancer are late diagnosis and a high rate of metastasis. CCA patients in advanced stages have poor survival and cannot be cured with surgery. Therefore, targeting molecules involved in the metastatic process may be an effective CCA treatment. Monopolar spindle 1 (MPS1) is a kinase protein that controls the spindle assemble checkpoint in mitosis. It is overexpressed in proliferating cells and various cancers. The functional roles of MPS1 in CCA progression have not been investigated. The aims of this study were to examine the roles and molecular mechanisms of MPS1 in CCA progression. Immunohistochemistry results showed that MPS1 was up-regulated in carcinogenesis of CCA in a hamster model, and positive expression of MPS1 in human CCA tissues was correlated to short survival of CCA patients (n = 185). Small interfering RNA (siRNA)-induced knockdown of MPS1 expression reduced cell proliferation via G2/M arrest, colony formation, migration, and invasion. Moreover, MPS1 controlled epithelial to mesenchymal transition (EMT)-mediated migration via AKT and STAT3 signaling transductions. MPS1 was also involved in MMPs-dependent invasion of CCA cell lines. The current research highlights for the first time that MPS1 has an essential role in promoting the progression of CCA via AKT and STAT3 signaling pathways and could be an attractive target for metastatic CCA treatment.

18.
Nat Prod Res ; 35(21): 3908-3917, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32400207

RESUMEN

A new secoiridoid glycoside, 3'-O-p-trans-coumaroylsweroside (1), together with twenty-nine compounds (2-30), were isolated from the roots and flowers of Fagraea fragrans Roxb. (Gentianaceae). Their structures were identified by analysis of mass spectrometric and NMR spectroscopic data. Compounds 2, 4, 6, 11 and 13-15 showed weak to moderate cytotoxicity against cholangiocarcinoma cancer cells lines (KKU-213, KKU-055 and KKU-214). We report the first phytochemical investigation of the roots and flowers of F. fragrans, as only the essential oil of the latter has been investigated.


Asunto(s)
Gentianaceae , Flores , Glicósidos Iridoides , Estructura Molecular , Raíces de Plantas
19.
Food Waterborne Parasitol ; 21: e00095, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294648

RESUMEN

Acute severe headache is the main presentation of eosinophilic meningitis (EOM) caused by Angiostrongylus cantonensis. Oral corticosteroid treatment is effective in reduction of duration of headache but may be contraindicated in particular patients. This study investigated clinical features and clinical course of eosinophilic meningitis caused by A. cantonensis if left untreated. Additionally, factors associated with duration of headache were evaluated. We conducted a retrospective study between 1997 and 2019 at a university hospital in Thailand. The inclusion criteria were adult patients who were diagnosed with EOM, had a positive serological test for A. cantonensis, received only supportive treatment, and had the complete clinical course documented. Factors associated with duration of headache were executed by multivariate linear regression analysis. A total of 54 patients were used in the final analysis. Of those, 39 patients (79.2%) were male and the mean ±â€¯SD age of all patients was 33.7 ±â€¯12.2. The mean ±â€¯SD duration of headache was 16.0 ±â€¯12.4 days with the longest duration of 49 days. The only factor associated with duration of headache was gender (p = 0.036). The male gender had a coefficient of -8.4 (95% CI: -16.2, -0.6). The median duration of headache in male and female patients was 11 and 20 days, respectively. In conclusion, A. cantonensis eosinophilic meningitis can cause long lasting headache, and gender may be associated with duration of headache.

20.
J Emerg Trauma Shock ; 13(2): 161-166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013097

RESUMEN

BACKGROUND: Several studies showed that inhaled corticosteroids (ICS) may be a potential treatment in acute asthma exacerbation in children. This study was an update meta-analysis on the roles of ICS in the management of acute asthma exacerbation in children presenting to the hospital. MATERIALS AND METHODS: Published articles with key words of ICS for asthma exacerbation, asthma attacks, and acute asthma in children aged under 18 years in the hospital setting with outcome of hospital admission between 2009 and 2018 were enrolled. The databases used in this study were Medline, Scopus, and Web of Science. Odds ratio of comparison between ICS and other treatments on hospital admissions was calculated. RESULTS: There were 311 eligible studies met the searching criteria; seven eligible studies for the analysis; comprised of three meta-analysis and four added studies. The ICS had a significant reduction in hospital admission compared with placebo in overall with odds ratio of 0.63 (95% confidence interval [CI]: 0.41-0.96) and in moderate-to-severe group with odds ratio of 0.17 (95% CI: 0.05-0.51). Comparing with systemic corticosteroid (SC), ICS had significantly lower hospital admissions overall and in mild-to-moderate group with odds ratios of 0.63 and 0.26, respectively. The combination of ICS and SC had odds ratio of 0.75 (95% CI: 0.57-0.99) over SC in moderate-to-severe asthma exacerbation. CONCLUSIONS: ICS significantly reduced hospital admission in asthma exacerbation in children. It may be used alone for mild-to-moderate asthma exacerbation and combination with SC for moderate-to-severe asthma exacerbation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...