Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Pharmaceutics ; 14(5)2022 May 06.
Article En | MEDLINE | ID: mdl-35631589

Preparation and evaluation of a non-invasive intranasal luteolin delivery for the management of cognitive dysfunction in Alzheimer's disease (AD) using novel chitosan decorated nanoparticles. Development of luteolin-loaded chitosomes was followed by full in vitro characterization. In vivo efficacy was evaluated using a sporadic Alzheimer's disease (SAD) animal model via intracerebroventricular injection of 3 mg/kg streptozotocin (ICV-STZ). Treatment groups of luteolin suspension and chitosomes (50 mg/kg) were then intranasally administered after 5 h of ICV-STZ followed by everyday administration for 21 consecutive days. Behavioral, histological, immunohistochemical, and biochemical studies were conducted. Chitosomes yielded promising quality attributes in terms of particle size (PS) (412.8 ± 3.28 nm), polydispersity index (PDI) (0.378 ± 0.07), Zeta potential (ZP) (37.4 ± 2.13 mv), and percentage entrapment efficiency (EE%) (86.6 ± 2.05%). Behavioral findings showed obvious improvement in the acquisition of short-term and long-term spatial memory. Furthermore, histological evaluation revealed an increased neuronal survival rate with a reduction in the number of amyloid plaques. Biochemical results showed improved antioxidant effects and reduced pro-inflammatory mediators' levels. In addition, a suppression by half was observed in the levels of both Aß aggregation and hyperphosphorylated-tau protein in comparison to the model control group which in turn confirmed the capability of luteolin-loaded chitosomes (LUT-CHS) in attenuating the pathological changes of AD. The prepared nanoparticles are considered a promising safe, effective, and non-invasive nanodelivery system that improves cognitive function in SAD albino mice as opposed to luteolin suspension.

2.
J Pharm Sci ; 111(2): 417-431, 2022 02.
Article En | MEDLINE | ID: mdl-34461114

This work aimed to develop a new efficient approach for safe treatment of psoriasis. To achieve that, resveratrol-loaded spanlastics(F1-F12) were prepared and evaluated by complete in vitro characterization. The two optimal formulations (F10 and F11) had their particle size in the nano range with high entrapment efficiency and sustainable drug release. These two formulae were incorporated in carbopol 934 gel formulations (G1-G8) with different concentrations of drug and carbopol 934 polymer. G1 and G5 (1% w/w Carbopol 934 gel and 0.1% resveratrol) showed 40.13% ± 2.017% and 73.76% ± 2.46%,8 hours drug release, respectively. Their pH was accepted and non-irritant. At a shear stress of 500 s-1, G1 and G5 showed a reasonable viscosity of 1048.5 ± 2.12 cps and 954 ± 2.15 cps, respectively. In the in vivo psoriasis study, mice treated by G5 gel showed significant improvement of erythema and scaling compared to positive control group and they maintained healthy skin as shown in histopathological observations. Moreover, this group showed the least changes in mRNA expression of inflammatory cytokines. Concisely, our results suggest that selected carbopol gel of resveratrol-loaded spanlastics could maximize resveratrol topical anti-psoriatic effect.


Psoriasis , Skin Absorption , Animals , Drug Liberation , Imiquimod , Mice , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Resveratrol/therapeutic use
3.
Sci Rep ; 7(1): 2902, 2017 06 06.
Article En | MEDLINE | ID: mdl-28588301

Gingerol is a major dietary compound that occurs in several plants belonging to the Zingiberaceae family. In the current study, the protective effect of gingerol on STZ-induced sporadic Alzheimer's disease (SAD) was determined. Gingerol was isolated from the seeds of Aframomum melegueta K. Schum and tested at doses of 10 and 20 mg/kgbwt for its possible effect on the SAD model in mice, using celecoxib (30 mg/kg bwt) as a reference standard. The curative effects of gingerol were assessed through measurement of ß-amyloid (Aß-42), α-, ß- secretases, APH1a and COX-2 levels. In addition, improvement in the cognitive deficit in mice after treatment was confirmed using the water maze and Y-maze with intra-maze cues. Gingerol improved the cognitive and behavioral impairment and AD-like pathology in streptozotocin model mice. These beneficial effects occurred with an increase in α-secretase activity and a decrease in cerebral Aß-42, ß- secretase, APH1a activity and COX-2-linked neuro-inflammation.


Alzheimer Disease/metabolism , Catechols/pharmacology , Fatty Alcohols/pharmacology , Protective Agents/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , Cyclooxygenase 2 Inhibitors , Disease Models, Animal , Enzyme Activation , Immunohistochemistry , Maze Learning , Mice , Streptozocin/adverse effects
...